K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 4 2017

Ta có: H=(1/2+1/3+1/4)+(1/5+...+1/8)+(1/9+1/16)+(1/17+...+1/63)

=> H=13/12 + (1/5+...+1/8)+(1/9+...+1/16)+(1/17+...+1/63)

=> H> 1 + 4x(1/8) + 8x (1/16) + (1/17+...+1/63)

=> H> 1+ 1/2 + 1/2 + (1/17+...+1/63)

=> H> 1+1+(1/17+...+1/63)

=> H>1+1

=> H>2

5 tháng 9 2017

cái qq gì

25 tháng 4 2019


Ta có:

\(\frac{1}{2}< 6\)

\(\frac{1}{3}< 6\)

\(...\)

\(\frac{1}{63}< 6\)

\(\Rightarrow1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+.....+\frac{1}{63}< 6\)

\(\Rightarrow A< 6\left(dpcm\right)\)

\(#Jen\)

Trao đổi nếu cần

3 tháng 5 2018

Trả lời

a) Đặt \(H=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\)

\(\Rightarrow H< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{99\cdot100}\)

\(\Leftrightarrow H< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{100}\)

\(\Leftrightarrow H< 1-\frac{1}{100}\)

\(\Leftrightarrow H< \frac{99}{100}\)

\(\Leftrightarrow A< 1+\frac{99}{100}\)

Ta thấy \(\frac{99}{100}< 1\Rightarrow A< 2\)

Vậy A<2 (đpcm)

b) Ta có: 1=1

             \(\frac{1}{2}+\frac{1}{3}< \frac{1}{2}+\frac{1}{2}=1\)

               \(\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+\frac{1}{7}< \frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}=1\)

               \(\frac{1}{8}+\frac{1}{9}+\frac{1}{10}+...+\frac{1}{15}< \frac{1}{8}+\frac{1}{8}+\frac{1}{8}+...+\frac{1}{8}=1\)

                \(\frac{1}{16}+\frac{1}{17}+...+\frac{1}{31}< \frac{1}{16}+\frac{1}{16}+...+\frac{1}{16}=1\)

                \(\frac{1}{32}+\frac{1}{33}+\frac{1}{34}+...+\frac{1}{63}< \frac{1}{32}+\frac{1}{33}+\frac{1}{34}+...+\frac{1}{63}=1\)

                 \(\Rightarrow B< 1+1+1+1+1+1\)

                 \(\Rightarrow B< 6\)

   Vậy B<6 (đpcm)

28 tháng 2 2018

Xét \(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{123}\)

\(=\left(1+\frac{1}{3}+...+\frac{1}{121}+\frac{1}{123}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{122}\right)\)

\(=\left(1+\frac{1}{3}+...+\frac{1}{121}+\frac{1}{123}\right)-2\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{61}\right)\)

\(=\frac{1}{62}+\frac{1}{63}+\frac{1}{64}+...+\frac{1}{123}\)