Cho tam giác ABC vuông tại A . Phân giác BD ( D thuộc AC)
a, CM: AB>AD
b, DE vuông góc BC (E thuộc BC) . F là giao điểm BA và ED . CM: BD là đường trung trực của AE
c, CM: DE=DC
d, CM: DA>DC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Xét Δ ABC vuông tại A, có :
\(BC^2=AB^2+AC^2\) (định lí Py - ta - go)
=> \(BC^2=3^2+4^2\)
=> \(BC^2=25\)
=> BC = 5 (cm)
b, Xét Δ ABD và Δ EBD, có :
\(\widehat{ABD}=\widehat{EBD}\) (BD là tia phân giác \(\widehat{ABE}\))
\(\widehat{BAD}=\widehat{BED}=90^o\)
BD là cạnh chung
=> Δ ABD = Δ EBD (g.c.g)
=> AB = AE
Xét Δ ABE, có :
AB = AE (cmt)
=> Δ ABE cân tại E
Ta có :
Δ ABE cân tại E
BD là tia phân giác của \(\widehat{ABE}\))
=> BD là đường trung trực của AE
c, Ta có : Δ ABD = Δ EBD (cmt)
=> AD = ED
Trong Δ CED, cạnh huyền DC là cạnh lớn nhất
=> ED < DC
Mà AD = ED (cmt)
=> AD < DC
xét tam giác ADB và tam giác EDB có
góc DAB = góc DEB =\(90^0\)
DB cạch chung
góc ABD=góc EBD ( BD là tia phân giác của góc B)
tam giác ADB = tam giác EBD ( cạnh huyền - góc nhọn )
suy ra AB = EB
gọi H là điểm giao nhau của AE và BD
xét tam giác AHB và tam giác EHB có
AB=BE
BH là cạnh chung
góc ABH = góc EBH ( bd là tia phân giác của góc B )
suy ra tam giác AHB = tam giác EHB ( c-g-c)
suy ra AH = HE
hay H là trung điểm của AE
suy ra góc AHB = góc EHB
mà AHB + EHB = \(180^0\)
AHB + EHB = AHB . 2 = \(180^0\)
AHB = EHB = \(180^0:2=90^0\)
suy ra BD là đường trung trực của AE
xét tam giác FAD và tam giác CED có
AD = ED ( tam giác ABD = tam giác EBD )
góc FDC = góc CDE ( hai góc đối đỉnh )
góc FAD = góc CED =\(90^0\)
Tam giác FAD = tam giác CED ( g-c-g )
suy ra DC = DF
áp dụng định lý pitago vào tam giác vuông FAD tại A
\(FD^2=FA^2+AD^2\)
mà FD , FA, AD đều lớn hơn 0
suy ra \(FD^2>AD^2\)
suy ra AD< FD
mà FD = DC
suy ra DC>AD
a: Xet ΔBAD và ΔBED có
BA=BE
góc ABD=góc EBD
BD chung
=>ΔBAD=ΔBED
b: BA=BE
DA=DE
=>BD là trung trực của AE
c: ΔBAD=ΔBED
=>góc BAD=góc BED=90 độ
=>DE vuông góc BC
AD=DE
DE<DC
=>AD<DC
d: góc HAE+góc BEA=90 độ
góc CAE+góc BAE=90 độ
=>góc HAE=góc CAE
=>AE là phân giác của góc HAC
A) Xét ΔABD và ΔEBD có:
+) AB=BE (gt)
+) góc ABD= góc EBD (do BD là phân giác góc B)
+) BD chung
=> ΔABD = ΔEBD (c-g-c)
b)
Qua C kẻ đường thẳng vuông góc với BD tại H.
Xét ΔBCF có: BH là đường cao đồng thời là phân giác của góc B
=> ΔBCF cân tại B (tính chất)
=> BC= BF (điều phải chứng minh)
c)
Xét ΔABC và ΔEBF có:
+) AB = EB (gt)
+) góc B chung
+) BC= BF (câu b)
=> ΔABC = ΔEBF (c-g-c)
d)
Từ ý a, ΔABD = ΔEBD (c-g-c)
=> góc BAD= góc BED = 90
=> DE ⊥ BC
Xét ΔBCF có: BH và CA là 2 đường cao cắt nhau tại D
=> D là trực tâm
=> FD ⊥ BC
=> DE trùng với FD
=> D,E,F thẳng hàng
a) Theo đề ra ta có:
AB= 6 (cm) => \(AB^2=6^2=36\)
AC= 8 (cm) => \(AC^2=8^2=64\)
BC=10(cm) => \(BC^2=10^2=100\)
Ta thấy: 100=36+64 => \(BC^2=AB^2+AC^2\) => Tam giác ABC vuông tại A ( Theo định lý Py-ta-go đảo)
b) Xét tam giác vuông BAD và tam giác vuông BED, ta có:
\(\widehat{B_1}=\widehat{B_2}\)(Do BD là tia phân giác của góc B)
Chung BD
=> \(\Delta BAD=\Delta BED\left(ch-gn\right)\)
=> DE=DA( cạnh tương ứng)
c) Xét tam giác EDC và tam giác ADF, có:
\(\widehat{CED}=\widehat{FAD}\left(=90^o\right)\)
DE=DA
\(\widehat{D_1}=\widehat{D_2}\)( góc đối đỉnh)
=> \(\Delta ADF=\Delta EDC\left(g.c.g\right)\)
=> DF=DC( cạnh tương ứng)
*) Xét trong tam giác vuông EDC thì góc vuông E là góc lớn nhất =.> CD là cạnh lớn nhất trong tam giác đó => DC>DE
Mà DC=DF => DF>DE
d)
Do tam giác BED = tam giác BAD => BE=BA (1)
Tam giác EDC= tam giác ADF => EC=AF(2)
Từ 1 và 2 => BE+EC=BA+AF=> BC=BF.
Xét tam giác BCK và tam giác BFK,có:
BF=BC
\(\widehat{B_1}=\widehat{B_2}\)
Chung BK
=> \(\Delta BFK=\Delta BCK\left(c.g.c\right)\) => CK=KF (*)
và \(\widehat{BKC}=\widehat{BKF}\) mà 2 góc này kề bù với nhau nên mỗi góc có số đo là \(90^o\)
Vậy KB hay là BD là đường trung trực của đoạn thẳng FC.
P/S: ở câu c nếu không muốn viết dài dòng có thể viết : Do BC=BF nên tam giác BCF cân tại B mà BK là tia phân giác góc B nên BK hay BD là đường trung trực của đoạn thẳng FC
Huỳnh Châu Giang ơi ....... không biết nhưng cậu xem lại hình đi ..... thật sự nó là đường trung trực mà à đường cao cũng được ....... do đó là tam giác cân nên đường cao và đường trung trực hay là đường trung tuyến ứng với cạnh đối diện của cái góc mà không giống 2 góc kia ý ( không biết diễn giải =.=)
Bạn tự vẽ hình nha!!!
a. Sorry!!!
b.
Xét tam giác ABD vuông tại A và tam giác EBD vuông tại E có:
ABD = EBD (BD là tia phân giác của ABE)
BD là cạnh chung
=> Tam giác ABD = Tam giác EBD (cạnh huyền - góc nhọn)
=> AD = ED (2 cạnh tương ứng) => D thuộc đường trung trực của AE
AB = EB (2 cạnh tương ứng) => B thuộc đường trung trực của AE
=> BD là đường trung trực của AE
c.
Xét tam giác AFD và tam giác ECD có:
DEC = DAF ( = 90 )
AD = ED (tam giác ABD = tam giác EBD)
ADF = EDC (2 góc đối đỉnh)
=> Tam giác AFD = Tam giác ECD (g.c.g)
=> DF = DC (2 cạnh tương ứng)
d.
Tam giác EDC vuông tại E
=> DC > DE (quan hệ giữa góc và cạnh đối diện trong tam giác vuông)
mad DE = DA (tam giác ABD = tam giác EBD)
=> DC > DA