Cho A = \(\frac{10^{2014}+1}{10^{2015}+1}\)
B = \(\frac{10^{2016}+1}{10^{2017}+1}\)
So sánh A và B
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{10^{2015}-1}{10^{2016}^{ }-1}=\frac{10^{2015}}{10^{2016}}=\frac{1}{1},B=\frac{10^{2014}-1}{10^{2015}-1}=\frac{10^{2014}}{10^{2015}}=\frac{1}{1}A=B\Rightarrow\)
Ta có công thức :
\(\frac{a}{b}>\frac{a+c}{b+c}\)\(\left(\frac{a}{b}>1;a,b,c\inℕ^∗\right)\)
Áp dụng vào ta có :
\(B=\frac{10^{2016}+1}{10^{2015}+1}>\frac{10^{2016}+1+9}{10^{2015}+1+9}=\frac{10^{2016}+10}{10^{2015}+10}=\frac{10\left(10^{2015}+1\right)}{10\left(10^{2014}+1\right)}=\frac{10^{2015}+1}{10^{2014}+1}=A\)
\(\Rightarrow\)\(B>A\) hay \(A< B\)
Vậy \(A< B\)
Chúc bạn học tốt ~
Áp dung công thức \(a>b\Leftrightarrow\frac{a}{b}>\frac{a+m}{b+m}\)
\(B=\frac{10^{2017}+1}{10^{2016}+1}>\frac{10^{2017}+1+9}{10^{2016}+1+9}=\frac{10^{2017}+10}{10^{2016}+10}=\frac{10\left(10^{2016}+1\right)}{10\left(10^{2015}+1\right)}=\frac{10^{2016}+1}{10^{2015}+1}=A\)
\(\Leftrightarrow B>A\)
Vì 20162016 + 1 < 20162017 + 1
\(\Rightarrow\frac{2016^{2016}+1}{2016^{2017}+1}< \frac{2016^{2016}+1+2015}{2016^{2016}+1+2015}=\frac{2016^{2016}+2016}{2016^{2017}+2016}=\frac{2016\left(2016^{2015}+1\right)}{2016\left(2016^{2016}+1\right)}\)
\(=\frac{2016^{2015}+1}{2016^{2016}+1}=B\)
\(\Rightarrow\)A < B
Ta có :
\(A=\frac{2016^{2016}+1}{2016^{2017}+1}< \frac{2016^{2016}+2015+1}{2016^{2017}+2015+1}=\frac{2016^{2016}+2016}{2016^{2017}+2016}=\frac{2016.\left(2016^{2015}+1\right)}{2016.\left(2016^{2016}+1\right)}\)
\(=\frac{2016^{2015}+1}{2016^{2016}+1}=B\)
\(\Rightarrow A< B\)
\(10A=\frac{10^{2015}+1+9}{10^{2015}+1}=1+\frac{9}{10^{2015}+1}\)
\(10B=\frac{10^{2017}+1+9}{10^{2017}+1}=1+\frac{9}{10^{2017}+1}\)
Vì \(\frac{9}{10^{2015}+1}>\frac{9}{10^{2017}+1}\Rightarrow10A>10B\Rightarrow A>B\)
a=1.1 b=1.1 a=b