K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 1 2022

ms lm xong luon này

undefined

30 tháng 1 2022

Thiếu rồi bạn

NV
30 tháng 1 2022

\(xy+\sqrt{\left(1+x^2\right)\left(1+y^2\right)}=a\)

\(\Rightarrow x^2y^2+2xy\sqrt{\left(1+x^2\right)\left(1+y^2\right)}+\left(1+x^2\right)\left(1+y^2\right)=a^2\)

\(\Rightarrow x^2\left(1+y^2\right)+y^2\left(1+x^2\right)+2.x\sqrt{1+y^2}.y\sqrt{1+x^2}+1=a^2\)

\(\Rightarrow\left(x\sqrt{1+y^2}+y\sqrt{1+x^2}\right)^2+1=a^2\)

\(\Rightarrow E^2+1=a^2\)

\(\Rightarrow E=\pm\sqrt{a^2-1}\)

30 tháng 1 2022

\(a^2=x^2y^2+(1+x^2)(1+y^2)+2xy\sqrt{(1+x^2)(1+y^2)} \\->2xy\sqrt{(1+x^2)(1+y^2)}=a^2-2x^2y^2-1-x^2-y^2 \\E^2=x^2(1+y^2)+y^2(1+x^2)+2xy\sqrt{(1+x^2)(1+y^2)} \\=x^2+y^2+2x^2y^2+a^2-2x^2y^2-1-x^2-y^2 \\=a^2-1\)

5 tháng 2 2022

\(E^2=x^2\left(y^2+1\right)+y^2\left(x^2+1\right)+2xy\sqrt{\left(y^2+1\right)\left(x^2+1\right)}\)

\(=2\left(xy\right)^2+x^2+y^2+2xy\sqrt{\left(x^2+1\right)\left(y^2+1\right)}\)

\(a^2=\left(xy\right)^2+2xy\sqrt{\left(x^2+1\right)\left(y^2+1\right)}+\left(x^2+1\right)\left(y^2+1\right)\)

\(=2\left(xy\right)^2+2xy\sqrt{\left(x^2+1\right)\left(y^2+1\right)}+x^2+y^2+1\)

\(\Rightarrow E^2=a^2-1\Rightarrow E=\sqrt{a^2-1}\)

5 tháng 2 2022

\(E=x\sqrt{1+y^2}+y\sqrt{1+x^2}\)

\(\Leftrightarrow E^2=x^2\left(1+y^2\right)+y^2\left(1+x^2\right)+2xy\sqrt{\left(1+y^2\right)\left(1+x^2\right)}\)

\(=2x^2y^2+x^2+y^2+2xy\left(a-xy\right)\)

\(=2x^2y^2+x^2+y^2+2xya-2x^2y^2\)

\(=x^2+y^2+2xya\)

\(=\left(2xy\right)2+a=a^2+a=E^2\)

\(E=\sqrt{a^2+a}\)

22 tháng 11 2023

Ta có:

\(x^2+1=x^2+xy+yz+zx\)

           \(=x\left(x+y\right)+z\left(x+y\right)=\left(x+y\right)\left(x+z\right)\)

Tương tự:

\(\left\{{}\begin{matrix}y^2+1=\left(y+z\right)\left(y+x\right)\\z^2+1=\left(z+y\right)\left(z+x\right)\end{matrix}\right.\)

\(A=x\sqrt{\dfrac{\left(x+y\right)\left(y+z\right)\left(z+x\right)\left(y+z\right)}{\left(x+y\right)\left(z+x\right)}}+y\sqrt{\dfrac{\left(z+x\right)\left(y+z\right)\left(x+y\right)\left(z+x\right)}{\left(x+y\right)\left(y+z\right)}}+z\sqrt{\dfrac{\left(x+y\right)\left(z+x\right)\left(y+z\right)\left(x+y\right)}{\left(z+x\right)\left(y+z\right)}}\)

\(=x\left|y+z\right|+y\left|z+x\right|+z\left|x+y\right|\)

TH1: x,y,z <0

\(A=-x\left(y+z\right)-y\left(z+x\right)-z\left(x+y\right)=-2\)

TH2: x,y,z>0

\(A=x\left(y+z\right)+y\left(z+x\right)+z\left(x+y\right)=2\)

22 tháng 11 2023

Ta có \(1+z^2=xy+yz+zx+z^2\)

\(=y\left(x+z\right)+z\left(x+z\right)\)

\(=\left(x+z\right)\left(y+z\right)\)

CMTT, \(1+x^2=\left(x+y\right)\left(x+z\right)\) và \(1+y^2=\left(x+y\right)\left(y+z\right)\)

Do đó \(\sqrt{\dfrac{\left(1+y^2\right)\left(1+z^2\right)}{1+x^2}}\) \(=\sqrt{\dfrac{\left(x+y\right)\left(y+z\right)\left(x+z\right)\left(y+z\right)}{\left(x+y\right)\left(x+z\right)}}\)

\(=\sqrt{\left(y+z\right)^2}\) \(=\left|y+z\right|\)

 Tương tự như thế, ta được

\(A=x\left|y+z\right|+y\left|z+x\right|+z\left|x+y\right|\)

 Cái này không tính ra số cụ thể được nhé bạn. Nó còn phải tùy vào dấu của \(x+y,y+z,z+x\) nữa.

14 tháng 9 2018

Bài này hình như x,y,z>0

Ta có: \(x\sqrt{\frac{\left(1+y^2\right)\left(1+z^2\right)}{1+x^2}}=x\sqrt{\frac{\left(y^2+xy+yz+zx\right)\left(z^2+xy+yz+zx\right)}{\left(x^2+xy+yz+zx\right)}}=x\sqrt{\frac{\left(y+x\right)\left(y+z\right)\left(z+x\right)\left(z+y\right)}{\left(x+y\right)\left(x+z\right)}}=x\sqrt{\left(y+z\right)^2}\)

Tương tự: \(y\sqrt{\frac{\left(1+z^2\right)\left(1+x^2\right)}{1+y^2}}=y\sqrt{\left(x+z\right)^2}\) 

                \(z\sqrt{\frac{\left(1+x^2\right)\left(1+y^2\right)}{1+z^2}}=z\sqrt{\left(x+y\right)^2}\)

Cộng từng vế, ta có: 

\(A=x\left(y+z\right)+y\left(z+x\right)+z\left(x+y\right)\) 

\(\Leftrightarrow A=2\left(xy+yz+zx\right)=2\)

14 tháng 9 2018

\(\hept{\begin{cases}1+y^2=y^2+xy+yz+zx=\left(x+y\right)\left(y+z\right)\\1+z^2=\left(z+x\right).\left(z+y\right)\\1+x^2=\left(x+y\right)\left(x+z\right)\end{cases}}\)

Thế vào \(A=x\sqrt{\left(y+z\right)^2}+y\sqrt{\left(x+z\right)^2}+z\sqrt{\left(x+y\right)^2}\)

\(=x\left|y+z\right|+y\left|x+z\right|+z\left|x+y\right|\)

\(=2\left(\left|xy\right|+\left|yz\right|+\left|zx\right|\right)\)

Nếu x,y,z\(\ge0\Rightarrow A=2\)

Nếu x,y,z\(< 0\)\(\Rightarrow A=-2\)

\(\(b)\frac{\sqrt{a}+a\sqrt{b}-\sqrt{b}-b\sqrt{a}}{ab-1}\left(a,b\ge0;a,b\ne1\right)\)\)

\(\(=\frac{\left(\sqrt{a}-\sqrt{b}\right)+\left(a\sqrt{b}-b\sqrt{a}\right)}{\left(\sqrt{ab}-1\right)\left(\sqrt{ab+1}\right)}\)\)

\(\(=\frac{\left(\sqrt{a}-\sqrt{b}\right)+\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)}{\left(\sqrt{ab}-1\right)\left(\sqrt{ab}+1\right)}\)\)

\(\(=\frac{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{ab}+1\right)}{\left(\sqrt{ab}-1\right)\left(\sqrt{ab}+1\right)}\)\)

\(\(=\frac{\sqrt{a}-\sqrt{b}}{\left(\sqrt{ab}-1\right)}\left(a,b\ge0.a,b\ne1\right)\)\)

_Minh ngụy_

\(\(c)\frac{x\sqrt{x}+y\sqrt{y}}{\sqrt{x}+\sqrt{y}}-\left(\sqrt{x}-\sqrt{y}\right)^2\)\)( tự ghi điều kiện )

\(\(=\frac{x\sqrt{x}+y\sqrt{y}-\left(\sqrt{x}-\sqrt{y}\right)^2.\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{x}+\sqrt{y}}\)\)

\(\(=\frac{x\sqrt{x}+y\sqrt{y}-\left(x\sqrt{x}+x\sqrt{y}-2x\sqrt{y}-2y\sqrt{x}+y\sqrt{x}+y\sqrt{y}\right)}{\sqrt{x}+\sqrt{y}}\)\)

\(\(=\frac{x\sqrt{y}+y\sqrt{x}}{\sqrt{x}+\sqrt{y}}\)\)( phá ngoặc và tính )

\(\(=\frac{\sqrt{xy}\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{x}+\sqrt{y}}=\sqrt{xy}\)\)

_Minh ngụy_

AH
Akai Haruma
Giáo viên
29 tháng 5 2023

Lời giải:

$xy+\sqrt{(1+x^2)(1+y^2)}=1$

$\Leftrightarrow \sqrt{(1+x^2)(1+y^2)}=1-xy$

$\Rightarrow (1+x^2)(1+y^2)=(1-xy)^2$ (bp 2 vế)

$\Leftrightarrow x^2+y^2=-2xy$

$\Leftrightarrow (x+y)^2=0\Leftrightarrow x=-y$.

Khi đó:

$M=(x+\sqrt{1+(-x)^2})(-x+\sqrt{1+x^2})=(\sqrt{1+x^2}+x)(\sqrt{1+x^2}-x)$

$=1+x^2-x^2=1$

24 tháng 8 2019

Có xy + yz + zx = 1

=> 1 + x2 = x2 + xy + yz + zx

     1 + x2 = (x + y)(y + z)

Tương tự ta có: 

     1 + y2 = (y + x)(y + z)

     1 + z2 = (z + x)(z + y)

Thay vào P, ta được:

\(P=x\left(y+z\right)+y\left(x+z\right)+z\left(x+y\right)\)

\(P=xy+yz+zx+xy+yz+zx\)

\(P=2\left(xy+yz+zx\right)=2\)

Vậy P = 2

6 tháng 8 2016

đề sai