\(\frac{x+1}{99}+\frac{x+2}{98}+\frac{x+3}{97}+\frac{x+4}{96}=-4\)hãy tìm x
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
À=)))Mình đã học rồi và đây thiếu đề nha bạn hình như cả tổng = -4?
\(\frac{x+1}{99}+\frac{x+2}{98}+\frac{x+3}{97}+\frac{x+4}{96}=-4\Leftrightarrow\frac{x+1}{99}+1+\frac{x+2}{98}+1+\frac{x+3}{97}+1+\frac{x+4}{96}+1=0\)
\(\Leftrightarrow\frac{x+10}{99}+\frac{x+100}{98}+\frac{x+100}{97}+\frac{x+100}{96}=0\)\(\Leftrightarrow\left(x+100\right)\left(\frac{1}{99}+\frac{1}{98}+\frac{1}{97}+\frac{1}{96}\right)=0\)
mà \(\frac{1}{99}+\frac{1}{98}+\frac{1}{97}+\frac{1}{96}\ne0\)\(\Rightarrow x+100=0\Leftrightarrow x=-100\)
Ta có :
\(\frac{x+1}{99}+\frac{x+2}{98}+\frac{x+3}{97}+\frac{x+4}{96}=-4\)
\(\Leftrightarrow\frac{x+1}{99}+1+\frac{x+2}{98}+1+\frac{x+3}{97}+1+\frac{x+4}{96}+1=-4+4\)
\(\Leftrightarrow\frac{x+100}{99}+\frac{x+100}{98}+\frac{x+100}{97}+\frac{x+100}{96}=0\)
\(\Rightarrow\left(x+100\right).\left(\frac{1}{99}+\frac{1}{98}+\frac{1}{97}+\frac{1}{96}\right)=0\)
Vì \(\frac{1}{99}+\frac{1}{98}+\frac{1}{97}+\frac{1}{96}\ne0\)nên \(x+100=0\)
\(\Rightarrow x=0-100=-100\)
\(\frac{x-1}{99}-\frac{x+1}{101}+\frac{x-2}{98}-\frac{x+2}{102}+\frac{x-3}{97}-\frac{x+3}{103}+\frac{x-4}{96}-\frac{x+4}{104}=0\)
\(\Rightarrow\frac{x-1}{99}-1-\frac{x+1}{101}+1+\frac{x-2}{98}-1-\frac{x+2}{102}+1+\frac{x-3}{97}-1-\frac{x+3}{103}+1+\frac{x-4}{96}-1-\frac{x+4}{104}+1=0\)
\(\Rightarrow\frac{x-100}{99}-\frac{x-100}{101}+\frac{x-100}{98}-\frac{x-100}{102}+\frac{x-100}{97}-\frac{x-100}{103}+\frac{x-100}{96}-\frac{x-100}{104}=0\)
\(\Rightarrow\left(x-100\right).\left(\frac{1}{99}-\frac{1}{101}+\frac{1}{98}-\frac{1}{102}+\frac{1}{97}-\frac{1}{103}+\frac{1}{96}-\frac{1}{104}\right)=0\)
Vì \(\frac{1}{99}>\frac{1}{101};\frac{1}{98}>\frac{1}{102};\frac{1}{97}>\frac{1}{103};\frac{1}{96}>\frac{1}{104}\)
\(\Rightarrow\frac{1}{99}-\frac{1}{101}+\frac{1}{98}-\frac{1}{102}+\frac{1}{97}-\frac{1}{103}+\frac{1}{96}-\frac{1}{104}\ne0\)
\(\Rightarrow x-100=0\)
\(\Rightarrow x=100\)
Vậy \(x=100\)
\(\frac{x-2}{99}+\frac{x-3}{98}=\frac{x-4}{97}+\frac{x-5}{96}\Leftrightarrow\frac{x-2}{99}-1+\frac{x-3}{98}-1=\frac{x-4}{97}-1+\frac{x-5}{96}-1\)
<=>\(\frac{x-101}{99}+\frac{x-101}{98}=\frac{x-101}{97}+\frac{x-101}{96}\)
<=>\(\left(x-101\right)\left(\frac{1}{99}+\frac{1}{98}-\frac{1}{97}-\frac{1}{96}\right)=0\)
<=>x-101=0 \(\left(\frac{1}{99}+\frac{1}{98}-\frac{1}{97}-\frac{1}{96}\ne0\right)\)
<=>x=101
(\(\frac{x+1}{99}+\frac{x+2}{98}+\frac{x+3}{97}+\frac{x+4}{96}\))+4=0
=)\(\frac{x+100}{99}+\frac{x+100}{98}+\frac{x+100}{97}+\frac{x+100}{96}\)=0
=)\(\left(x+100\right).\left(\frac{1}{99}+\frac{1}{98}+\frac{1}{97}+\frac{1}{96}\right)=0\)
Mà \(\left(\frac{1}{99}+\frac{1}{98}+\frac{1}{97}+\frac{1}{96}\right)>0\)
=)\(x+100=0\)
=)\(x=-100\)
Vậy \(x=-100\)
\(\frac{x+1}{99}+\frac{x+2}{98}+\frac{x+3}{97}+\frac{x+4}{96}+4=0\)
\(\frac{x+1}{99}+1+\frac{x+2}{98}+1+\frac{x+3}{97}+1+\frac{x+4}{96}+1=0\)
\(\frac{x+100}{99}+\frac{x+100}{98}+\frac{x+100}{97}+\frac{x+100}{96}=0\)
\(\left(x+100\right)\left(\frac{1}{99}+\frac{1}{98}+\frac{1}{97}+\frac{1}{96}\right)=0\)
x+100=0 vì (1/99+1/98+1/97+1/96) khác 0
x=0-100
x=-100