mn ơi giải bài 5 giúp mik nha
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: =3/2-2/3:(4/18+3/18)
=3/2-2/3:7/18
=3/2-2/3*18/7
=3/2-12/7
=-3/14
b: =(5/8-1/5)*2-1/4
=5/4-2/5-1/4
=1-2/5=3/5
c: =(3+5/6-1/2):55/12
=10/3*12/55
=8/11
1. bến còn lại số ô tô là:
45 - 18 + 17 = 44(chiếc)
Đáp số: 44 chiếc ô tô
1:
#include <bits/stdc++.h>
using namespace std;
long long t,i,n;
int main()
{
cin>>n;
t=0;
for (i=1; i<=n; i++) t+=i;
cout<<t;
return 0;
}
Bài 2:
#include <bits/stdc++.h>
using namespace std;
long long n,i,t;
int main()
{
cin>>n;
t=0;
for (i=1; i<=n; i++)
if (i%2==0) t+=i;
cout<<t;
return 0;
}
Bài 3:
#include <bits/stdc++.h>
using namespace std;
long long n,i,t;
int main()
{
cin>>n;
t=0;
for (i=1; i<=n; i++)
if (i%2!=0) t+=i;
cout<<t;
return 0;
}
Bài 4:
#include <bits/stdc++.h>
using namespace std;
long long n,i,t;
int main()
{
cin>>n;
t=0;
for (i=1; i<=n; i++)
if (i%3==0) t+=i;
cout<<t;
return 0;
}
Bài 5:
#include <bits/stdc++.h>
using namespace std;
long long n,i,t;
int main()
{
cin>>n;
t=1;
for (i=1; i<=n; i++)
t*=i;
cout<<t;
return 0;
}
Bài 4:
a: Xét tứ giác OBAC có
\(\widehat{OBA}+\widehat{OCA}=180^0\)
Do đó: OBAC là tứ giác nội tiếp
b: Xét (O) có
AB là tiếp tuyến
AC là tiếp tuyến
Do đó: AB=AC
hay A nằm trên đường trung trực của BC(1)
Ta có: OB=OC
nên O nằm trên đường trung trực của BC(2)
Từ (1) và (2) suy ra OA là đường trung trực của BC
hay OA⊥BC
c: Xét ΔOBA vuông tại B có BA là đường cao
nên \(OH\cdot OA=OB^2=R^2\)
Bài 2:
Hình 3:
Xét ΔABC có AD là phân giác
nên x/3,5=7,2/4,5
=>x/3,5=1,8
=>x=6,3
Hình 4:
Xet ΔABC có MN//BC
nên 6/3=4/x
=>4/x=2
=>x=2
Bài 5
a) Ta có:
AB/A'B' = 6/4 = 3/2
AC/A'C' = 9/6 = 3/2
BC/B'C' = 12/8 = 3/2
⇒AB/A'B' = AC/A'C' = BC/B'C' = 3/2
⇒∆ABC ∽ ∆A'B'C' (c-c-c)
b) Do ∆ABC ∽ ∆A'B'C' (c-c-c)
⇒∠A = ∠A' = 100⁰
∠B = ∠B' = 44⁰
⇒∠C = 180⁰ - (∠A + ∠B)
= 180⁰ - (100⁰ + 44⁰)
= 36⁰
c) Tỉ số chu vi của ∆ABC và ∆A'B'C' là:
(AB + AC + BC)/(A'B' + A'C' + B'C')
= (6 + 9 + 12)/(4 + 6 + 8)
= 27/18
= 3/2
Bài 4:
a) Xét tam giác ABM và tam giác ACM có:
AM chung.
AB = AC (Tam giác ABC cân).
BM = CM (M là trung điểm BC).
\(\Rightarrow\) Tam giác ABM = Tam giác ACM (c - c - c).
b) Xét tam giác BHM vuông tại H và tam giác CKM vuông tại K có:
\(\widehat{B}=\widehat{C}\) (Tam giác ABC cân).
\(BM=CM\) (M là trung điểm BC).
\(\Rightarrow\) Tam giác BHM = Tam giác CKM (cạnh huyền - góc nhọn).
\(\Rightarrow\) BH = CK (2 cạnh tương ứng).