K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 3 2021

\(log_{140}63=\frac{x.log_x3.log_7x+1}{log_x3.log_35.log_7x+x.log_7x+1}\)

\(\Leftrightarrow log_{140}63=\frac{x.log_73+1}{log_35.log_73+x.log_7x+1}\)

\(\Leftrightarrow\frac{log_763}{log_7140}=\frac{log_73^x+1}{log_75+log_7x^x+1}\)

\(\Leftrightarrow\frac{log_73^2+1}{log_75+log_72^2+1}=\frac{log_73^x+1}{log_75+log_7x^x+1}\)

\(\Leftrightarrow log_{140}\left(35x^x\right)=log_{63}\left(7.3^x\right)\)

16 tháng 3 2021

Cái dòng cuối cùng quên xóa mất. Thôi tự hiểu đoạn đó nha

NV
13 tháng 1 2024

a.

ĐKXĐ: \(x>0\)

\(log_5x>6\Rightarrow x>6^5\Rightarrow x>7776\)

b.

ĐKXĐ: \(x>0\)

\(log_7x< 2\Rightarrow\left\{{}\begin{matrix}x>0\\x< 7^2\end{matrix}\right.\) \(\Rightarrow0< x< 49\)

c. 

\(log_2x\le3\Rightarrow\left\{{}\begin{matrix}x>0\\x\le3^2\end{matrix}\right.\) \(\Rightarrow0< x\le9\)

d.

\(log_{\dfrac{1}{3}}x>27\Rightarrow\left\{{}\begin{matrix}x>0\\x< \left(\dfrac{1}{3}\right)^{27}\end{matrix}\right.\)

\(\Rightarrow0< x< \dfrac{1}{3^{27}}\)

27 tháng 4 2017

Hỏi đáp Toán

Hỏi đáp Toán

27 tháng 2 2016

Với điều kiện x>0 ta có :

\(\Leftrightarrow\) \(\left(\log_2x-2\right)\left(\log_7x-1\right)=0\)

\(\Leftrightarrow\begin{cases}\log_2x-2=0\\\log_7x-1=0\end{cases}\)

\(\Leftrightarrow\begin{cases}\log_2x=2\\\log_7x=1\end{cases}\)

\(\Leftrightarrow\begin{cases}x=4\\x=7\end{cases}\)

Cùng thỏa mãn điều kiện x>0

Vậy phương trình có 2 nghiệm x=4; x=7

24 tháng 5 2017

Hàm lũy thừa, mũ và loagrit

Hàm lũy thừa, mũ và loagrit

12 tháng 5 2016

Ta có : \(\log_25=\log_23.\log_35=ab\)

\(\Rightarrow I=\log_{140}63=\frac{\log_263}{\log_2140}=\frac{\log_2\left(3^2.7\right)}{\log_2\left(2^2.5.7\right)}=\frac{2\log_23+\log_27}{2+\log_25+\log_27}=\frac{2a+c}{2+ab+c}\)

22 tháng 11 2023

d: ĐKXĐ: \(x^2-1< >0\)

=>\(x^2\ne1\)

=>\(x\notin\left\{1;-1\right\}\)

Vậy: TXĐ là D=R\{1;-1}

b: ĐKXĐ: \(2-x^2>0\)

=>\(x^2< 2\)

=>\(-\sqrt{2}< x< \sqrt{2}\)

Vậy: TXĐ là \(D=\left(-\sqrt{2};\sqrt{2}\right)\)

a: ĐKXĐ: \(x-1>0\)

=>x>1

Vậy: TXĐ là \(D=\left(1;+\infty\right)\)

c: ĐKXĐ: \(x^2+x-6>0\)

=>\(x^2+3x-2x-6>0\)

=>\(\left(x+3\right)\left(x-2\right)>0\)

TH1: \(\left\{{}\begin{matrix}x+3>0\\x-2>0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x>2\\x>-3\end{matrix}\right.\)

=>x>2

TH2: \(\left\{{}\begin{matrix}x+3< 0\\x-2< 0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x< -3\\x< 2\end{matrix}\right.\)

=>x<-3

Vậy: TXĐ là \(D=\left(2;+\infty\right)\cup\left(-\infty;-3\right)\)

e: ĐKXĐ: \(x^2-2>0\)

=>\(x^2>2\)

=>\(\left[{}\begin{matrix}x>\sqrt{2}\\x< -\sqrt{2}\end{matrix}\right.\)

Vậy: TXĐ là \(D=\left(-\infty;-\sqrt{2}\right)\cup\left(\sqrt{2};+\infty\right)\)

f: ĐKXĐ: \(\sqrt{x-1}>0\)

=>x-1>0

=>x>1

Vậy: TXĐ là \(D=\left(1;+\infty\right)\)

g: ĐKXĐ: \(x^2+x-6>0\)

=>\(\left(x+3\right)\left(x-2\right)>0\)

=>\(\left[{}\begin{matrix}x>2\\x< -3\end{matrix}\right.\)

Vậy: TXĐ là \(D=\left(2;+\infty\right)\cup\left(-\infty;-3\right)\)

13 tháng 5 2016

Ta có : 

\(\begin{cases}5>1;3>1\Rightarrow\log_53>0\\15>1;4>1\Rightarrow\log_{15}4>0\\0< \frac{1}{3}< 1;\frac{7}{2}>1\Rightarrow\log_{\frac{1}{3}}\frac{14}{5}< 0\\0< 0,3< 1;\frac{7}{2}>1\Rightarrow\log_{0,3}\frac{7}{2}< 0\end{cases}\)

\(\Rightarrow A=\frac{\log_53.\log_{15}4}{\log_{\frac{1}{3}}\frac{14}{5}\log_{0,3}\frac{7}{2}}>0\)

14 tháng 5 2016

Điều kiện :  

                 \(\log_{\frac{1}{5}}\left(\log_5\frac{x^2+1}{x+3}\right)\ge0\)

           \(\Leftrightarrow0< \log_{\frac{1}{5}}\left(\log_5\frac{x^2+1}{x+3}\right)\le1\)

           \(\Leftrightarrow\log_51< \log_5\frac{x^2+1}{x+3}\le\log_55\)

\(\Leftrightarrow1< \frac{x^2+1}{x+3}\le5\)\(\Leftrightarrow\begin{cases}\frac{x^2-x-2}{x+3}>0\\\frac{x^2-5x-14}{x+3}\le0\end{cases}\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}-3< x< -1\\x>2\end{array}\right.\) và \(\left[\begin{array}{nghiempt}x< -3\\-2\le x\le7\end{array}\right.\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}-2\le x< -1\\2< x\le7\end{array}\right.\)

Vậy tập xác định là D = [-2;-1) U (2;7]

                          

18 tháng 11 2023

`a)TXĐ: R`

`b)TXĐ: R\\{0}`

`c)TXĐ: R\\{1}`

`d)TXĐ: (-oo;-1)uu(1;+oo)`

`e)TXĐ: (-oo;-1/2)uu(1/2;+oo)`

`f)TXĐ: (-oo;-\sqrt{2})uu(\sqrt{2};+oo)`

`h)TXĐ: (-oo;0) uu(2;+oo)`

`k)TXĐ: R\\{1/2}`

`l)ĐK: {(x^2-1 > 0),(x-2 > 0),(x-1 ne 0):}`

`<=>{([(x > 1),(x < -1):}),(x > 2),(x ne 1):}`

`<=>x > 2`

   `=>TXĐ: (2;+oo)`

18 tháng 11 2023

câu l) $x^2-1 > 0$ thì giải ra 2 nghiệm $x < -1, x > 1$ mới đúng chứ nhỉ?

NV
12 tháng 1 2024

\(log_5125=log_55^3=3\)

\(log_6216=log_66^3=3\)

\(log_{10}\dfrac{1}{10000}=log_{10}10^{-4}=-4\)

\(log\sqrt{1000}=log_{10}10^{\dfrac{3}{2}}=\dfrac{3}{2}\)

\(81^{log_35}=3^{3log_35}=3^{log_3125}=125\)

\(125^{log_52}=5^{3log_52}=5^{log_58}=8\)

\(\left(\dfrac{1}{49}\right)^{log_7\dfrac{1}{8}}=7^{-2log_7\dfrac{1}{8}}=7^{log_764}=64\)

\(\left(\dfrac{1}{625}\right)^{log_52}=5^{-4log_52}=5^{log_5\dfrac{1}{16}}=\dfrac{1}{16}\)