K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 4 2016

a) ta có :1/5^2<1/4.5=1/4-1/5

1/6^2<1/5.6=1/5-1/6

.................

1/100^2<1/99.100=1/99-1/100

=>1/5^2+1/6^2+1/7^2+......+1/100^2 <1/4-1/100=6/25<1/4(1)

ta lại có:1/5^2>1/5.6=1/5-1/6

1/6^2>1/6.7=1/6-1/7

.................

1/100^2>1/100.101=1/100-1/101

=>1/5^2+1/6^2+1/7^2+......+1/100^2>1/5-1/101=96/505>1/6(2)

từ (1)(2) suy ra 1/6<1/5^2+1/6^2+1/7^2+......+1/100^2 < 1/4

26 tháng 4 2016

b)ta có:1/11+1/12+....+1/70=(1/11+1/12+...+1/20)+(1/21+1/22+...+1/30)+(1/31+1/32+...+1/40)+(1/41+1/42+...+1/50)+(1/51+1/52+...+1/60)+(1/61+1/62+...+1/70)>(1/20+1/20+...+1/20)(10 phân số 1/20)+(1/30+1/30+...+1/30)(10 phân số 1/30)+(1/40+1/40+...+1/40)(10 phân số 1/40)+(1/50+1/50+...+1/50)(10 phân số 1/50)+(1/60+1/60+...+1/60)(10 phân số 1/60)=1/2+1/3+1/4+1/5+1/6=29/20>4/3(1)

ta lại có:1/11+1/12+....+1/70=(1/11+1/12+...+1/20)+(1/21+1/22+...+1/30)+(1/31+1/32+...+1/40)+(1/41+1/42+...+1/50)+(1/51+1/52+...+1/60)+(1/61+1/62+...+1/70)<(1/11+1/11+...+1/11)(10 phân số 1/11)+(1/21+1/21+...+1/21)(10 phân số 1/21)+(1/31+1/31+...+1/31)(10 phân số 1/31)+(1/41+1/41+...+1/41)(10 phân số 1/41)+(1/51+1/51+...+1/51)(10 phân số 1/51)+(1/61+1/61+...+1/61)(10phân số 1/61)  =10/11+10/21+10/31+10/41+10/51+10/61=2,311777327<5/2(2)

từ (1)(2)=>4/3<1/11+1/12+....+1/70<5/2

7 tháng 5 2019

Ta có: 

\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}...+\frac{1}{99.100}\)

\(=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(=\left(1+\frac{1}{3}+...+\frac{1}{99}+\frac{1}{100}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{100}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{99}+\frac{1}{100}\right)-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{100}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{99}+\frac{1}{100}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)\)

\(=\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}\)

\(=\left(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{75}\right)+\left(\frac{1}{76}+\frac{1}{77}+...+\frac{1}{100}\right)\)

Ta có:\(\frac{1}{51}>\frac{1}{52}>...>\frac{1}{75};\frac{1}{76}>\frac{1}{77}>...>\frac{1}{100}\)

Tự giải tiếp hay nhờ thầy cô giảng tiếp đi nha bn, mỏi tay nên ko thể làm đc nữa !!

22 tháng 6 2017

a/(Sửa đề bài) A= 1/2 + 2/22 + 3/23 + 4/24 +..+ 100/2100                                                                                                                                                  => 1/2A = 1/22 + 2/23 + 3/24 +..+ 100/2101                                                                                                                                                   => A - 1/2A = 1/2 + 2/22 +..+ 100/2100 - 1/22 - 2/23 -..- 100/2101                                                                                                                 => 1/2A = 1/2 + 1/22 + 1/23 +..+ 1/2100 - 100/2101                                                                                                                                       Gọi riêng cụm (1/2 + 1/22 +..+ 1/2100) là B                                                                                                                                                   => 2B = 1 + 1/2 + 1/22 +..+ 1/299                                                                                                                                                                   => 2B-B = B = 1+ 1/2 +1/22 +..+ 1/299 - 1/2 - 1/22 -..- 1/2100 = 1 - 1/2100                                                                                            => 1/2A = 1 - 1/2100 - 100/2101                                                                                                                                                                 Có 1/2A < 1 => A < 2 =>ĐPCM                                                                                                                          b/ => 1/3C = 1/32 + 2/33 + 3/34 +..+ 100/3101                                                                                                                                                => C - 1/3C = 2/3C = 1/3 + 2/32 +..+ 100/3100 - 1/32 - 2/33 -..- 100/3101 = 1/3 + 1/32 + 1/33 +..+ 1/3100 - 100/3101                              Gọi riêng cụm (1/3 + 1/32 +..+ 1/3100) là D                                                                                                                                               => 3D = 1 + 1/3 +..+ 1/399                                                                                                                                                                         => 3D - D = 2D = 1 + 1/3 +..+1/399 - 1/3 -1/32 -..- 1/3100 = 1 - 1/3100                                                                                                       => 2/3C *2 = 4/3C = 1 - 1/3100 - 200/3101                                                                                                                                                 Có 4/3C < 1 => C<3/4 => ĐPCM              Tạm thời thế đã, giải tiếp đc con nào mình sẽ gửi sau :)          

4 tháng 11 2018

Câu hỏi của Doãn Thị Thanh Thu - Toán lớp 7 - Học toán với OnlineMath tham khảo

5 tháng 11 2018

Thank you 

5 tháng 9 2019

\(A=\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{99.100}\)

\(\Rightarrow A=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-...+\frac{1}{99}-\frac{1}{100}\)

Ta có A =1/1.2+1/3.4+1/5.6+...+1/99.100

=(1/1.2+1/3.4)+(1/5.6+...+1/99.100)

=7/12+(1/5.6+...+1/99.100)>7/12(1)

A=1-1/2+1/3-1/4+1/5-1/6+...+1/99-1/100

=(1+1/3+1/5+...+1/99)-(1/2+1/4+..+1/100)

=(1+1/2+1/3+1/4+..+1/99+1/100)-2(1/2+1/4+....+1/100)    ( Cộng thêm cả 2 vế với 1/2+1/4+..+1/100)

=(1+1/2+1/3+..+1/100)-(1+1/2+..+1/50)

=1/51+1/52+..+1/100

Dãy số trên có 50 số hang 50 chia hết cho 10 nên ta nhóm 10 số vào 1 nhóm

A=(1/51+1/52+..+1/60)+(1/61+1/62+..+1/70)+(1/71+1/72+..+1/80)+(1/81+..+1/90)+(1/91+..+1/100)

<1/50.10+1/60.10+1/70.10+1/80.10+1/90.10=1/5+1/6+1/7+1/8+1/9<1/5+1/6+1/7.3=167/210<175/210=5/6

=>A<5/6(2)

từ 1 và 2 => đpcm