K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 1 2022

= 66 - 2

= 64

27 tháng 1 2022

= 64 nha bạn

9 tháng 7 2019
  • A=( 2/3 + 2/15 ) + ( 2/35 + 2/63 )

            A=12/15 + 28/315

            A=8/9 

  • B. 1/9 x X = 1 
  • X= 1: 1/9
  • X= 9
  •  

c: Ta có: \(\dfrac{2}{5}\cdot\left[\left(\dfrac{3}{5}\right)^2:\left(-\dfrac{1}{5}\right)^2-7\right]\cdot\left(1000\right)^0\cdot\left|-\dfrac{11}{15}\right|\)

\(=\dfrac{2}{5}\cdot\left(\dfrac{9}{25}:\dfrac{1}{25}-7\right)\cdot1\cdot\dfrac{11}{15}\)

\(=\dfrac{2}{5}\cdot\dfrac{11}{15}\cdot2\)

\(=\dfrac{44}{75}\)

21 tháng 8 2021

Cảm ơn bạn lần nữa! vui

21 tháng 4 2023

x= 1+2.1+2.2+2.3+...+2.63

=1+2(1+2+3+...+63)

=1+2. (64.63)/2

=1+2. 32.63

=4033

Bạn đăng lại câu hỏi có chèn latex cho người giải dễ nhìn hơn nhé, vào chỗ có kí hiệu \(\Sigma\) để nhập.

18 tháng 2 2020

Ta có:

37.41+37.63-63.37+63.41

=41(37+63)

=41.100

=4100

Ta có:

20-5x=15+6x-6

<=>20-5x-15-6x+6=0

<=>11-11x=0

<=>11x=11

<=>x=1

Vậy x=1

17 tháng 8 2016

\(\frac{2}{3}+\frac{2}{15}+\frac{2}{35}+\frac{2}{63}=2\left(\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+\frac{1}{63}\right)=2\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}\right)\)

\(=2\left[\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}\right)\right]\)

\(=2.\left[\frac{1}{2}.\left(1-\frac{1}{9}\right)\right]=2.\left(\frac{1}{2}.\frac{8}{9}\right)=2.\frac{4}{9}=\frac{8}{9}\)

4 tháng 12 2019

Cần CM: \(\frac{1}{9-a}-\frac{12}{a^2+63}\ge\frac{1}{144}a^2-\frac{1}{16}\) (1) 

\(\Leftrightarrow\)\(\frac{a^2+12a-45}{\left(9-a\right)\left(a^2+63\right)}\ge\frac{1}{144}a^2-\frac{1}{16}\)

\(\Leftrightarrow\)\(144\left(a^2+12a-45\right)\ge\left(a-3\right)\left(a+3\right)\left(9-a\right)\left(a^2+63\right)\)

\(\Leftrightarrow\)\(\left(a-3\right)\left[144\left(a+15\right)-\left(a+3\right)\left(9-a\right)\left(a^2+63\right)\right]\ge0\)

\(\Leftrightarrow\)\(\left(a-3\right)\left(a^4-6a^3+36a^2-234a+459\right)\ge0\)

\(\Leftrightarrow\)\(\left(a-3\right)^2\left(a^3-3a^2+27a+153\right)\ge0\)

\(\Leftrightarrow\)\(\left(a-3\right)^2\left[\left(a-3\right)^2\left(a+3\right)+36a+126\right]\ge0\) ( đúng )

Do đó (1) đúng => \(\Sigma_{cyc}\frac{1}{9-a}-\Sigma_{cyc}\frac{12}{a^2+63}\ge\frac{1}{144}\left(a^2+b^2+c^2\right)-\frac{3}{16}=0\)

\(\Rightarrow\)\(\Sigma_{cyc}\frac{12}{a^2+63}\le\Sigma_{cyc}\frac{1}{9-a}\le\Sigma_{cyc}\frac{1}{a+b}\) ( do \(a+b+c\le9\) ) 

Dấu "=" xảy ra khi a=b=c=3