K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 1 2022

\(\frac{1-3x}{1+3x}-\frac{1+3x}{1-3x}=\frac{12}{1-9x^2}\left(ĐKXĐ:x\ne\pm\frac{1}{3}\right)\)

<=> \(\frac{\left(1-3x\right)^2}{\left(1+3x\right)\left(1-3x\right)}-\frac{\left(1+3x\right)^2}{\left(1-3x\right)\left(1+3x\right)}=\frac{12}{\left(1-3x\right)\left(1+3x\right)}\)

=> \(\left(1-3x\right)^2-\left(1+3x\right)^2=12\)

<=> \(\left(1-3x-1-3x\right)\left(1-3x+1+3x\right)=12\)

<=> \(-12x=12\)

<=> \(x=-1\left(TMĐK\right)\)

Vậy: ...

27 tháng 1 2022

\(\frac{12}{1-9x^2}=\frac{1-3x}{1+3x}-\frac{1+3x}{1-3x}\)

\(\Leftrightarrow\)\(\frac{12}{\left(1-3x\right)\left(1+3x\right)}=\frac{\left(1-3x\right)^2-\left(1+3x\right)^2}{\left(1-3x\right)\left(1+3x\right)}\)

\(\Rightarrow\)\(12=\left(1-3x\right)^2-\left(1+3x\right)^2\)

\(\Leftrightarrow\)\(12=\left(1-3x-1-3x\right)\left(1-3x+1+3x\right)\)

\(\Leftrightarrow\)\(12=\left(-6x\right).2\)

\(\Leftrightarrow\)\(12=-12x\)

\(\Leftrightarrow\)\(x=-1\)

12 tháng 8 2018

( 9 x 2 – 4 ) ( x + 1 ) = ( 3 x + 2 ) ( x 2 - 1 )

⇔ (3x – 2)(3x + 2)(x + 1) - (3x + 2)(x - 1)(x + 1) = 0

⇔(3x+ 2)(x + 1)(3x – 2 – x + 1) = 0

⇔ (3x + 2)(x + 1)(2x – 1) = 0

Cách giải phương trình tích cực hay, có đáp án | Toán lớp 8

b: \(\Leftrightarrow9x^2+12x+4-18x+12=9x^2\)

=>-6x+16=0

=>-6x=-16

hay x=8/3(nhận)

c: \(\Leftrightarrow\dfrac{x+1+x-1}{\left(x-1\right)\left(x+1\right)}=\dfrac{2}{x+2}\)

\(\Leftrightarrow2x\left(x+2\right)=2\left(x^2-1\right)\)

\(\Leftrightarrow2x^2+4x-2x^2+2=0\)

=>4x+2=0

hay x=-1/2(nhận)

3 tháng 3 2022

\(a,x-5\left(x-2\right)=6x\\ \Leftrightarrow x-5x+10-6x=0\\ \Leftrightarrow-10x+10=0\\ \Leftrightarrow x=1\\ b,2^3+3x^2-32x=48\\ \Leftrightarrow3x^2-32x+8=48\\ \Leftrightarrow3x^2-32x-40=0\)

Nghiệm xấu lắm bn

\(c,\left(3x+1\right)\left(x-3\right)^2=\left(3x+1\right)\left(2x-5\right)^2\\ \Leftrightarrow c,\left(3x+1\right)\left[\left(2x-5\right)^2-\left(x-3\right)^2\right]\\ \Leftrightarrow\left(3x+1\right)\left(2x-5-x+3\right)\left(2x-5+x-3\right)=0\\ \Leftrightarrow\left(3x+1\right)\left(x-2\right)\left(3x-8\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{3}\\x=2\\x=\dfrac{8}{3}\end{matrix}\right.\)

\(d,9x^2-1=\left(3x+1\right)\left(4x+1\right)\\ \Leftrightarrow\left(3x+1\right)\left(4x+1\right)-\left(3x-1\right)\left(3x+1\right)=0\\ \Leftrightarrow\left(3x+1\right)\left(4x+1-3x+1\right)=0\\ \Leftrightarrow\left(3x+1\right)\left(x+2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{3}\\x=-2\end{matrix}\right.\)

3 tháng 3 2022

\(b,2x^3+3x^2-32x-48=0\\ \Leftrightarrow\left(2x^3-8x^2\right)+\left(11x^2-44x\right)+\left(12x-48\right)=0\\ \Leftrightarrow2x^2\left(x-4\right)+11x\left(x-4\right)+12\left(x-4\right)=0\\ \Leftrightarrow\left(x-4\right)\left(2x^2+11x+12\right)=0\\ \Leftrightarrow\left(x-4\right)\left[\left(2x^2+8x\right)+\left(3x+12\right)\right]=0\\ \Leftrightarrow\left(x-4\right)\left[2x\left(x+4\right)+3\left(x+4\right)\right]=0\\ \Leftrightarrow\left(x-4\right)\left(2x+3\right)\left(x+4\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=4\\x=-\dfrac{3}{2}\\x=-4\end{matrix}\right.\)

21 tháng 7 2018

a: \(x\left(x-1\right)+2x^2-2=0\)

=>\(x\left(x-1\right)+2\left(x-1\right)\left(x+1\right)=0\)

=>\(\left(x-1\right)\left(x+2x+2\right)=0\)

=>(x-1)(3x+2)=0

=>\(\left[{}\begin{matrix}x=1\\x=-\dfrac{2}{3}\end{matrix}\right.\)

b: \(9x^2-1=\left(3x+1\right)\left(2x-3\right)\)

=>\(\left(3x+1\right)\left(3x-1\right)-\left(3x+1\right)\left(2x-3\right)=0\)

=>\(\left(3x+1\right)\left(3x-1-2x+3\right)=0\)

=>(3x+1)(x+2)=0

=>\(\left[{}\begin{matrix}x=-\dfrac{1}{3}\\x=-2\end{matrix}\right.\)

26 tháng 1 2024

a: x(x−1)+2x2−2=0

=>x(x−1)+2(x−1)(x+1)=0

=>(x−1)(x+2x+2)=0

=>(x-1)(3x+2)=0

=>⎡⎣x=1x=−23

b: 9x2−1=(3x+1)(2x−3)9

=>(3x+1)(3x−1)−(3x+1)(2x−3)=0

=>(3x+1)(3x−1−2x+3)=0

=>(3x+1)(x+2)=0

=>⎡⎣x=−13x=−2

30 tháng 12 2023

a)

\(\left(9x^2-4\right)\left(x+1\right)=\left(3x+2\right)\left(x^2-1\right)\)

\(\Leftrightarrow\left(9x^2-4\right)\left(x+1\right)=\left(3x+2\right)\left(x+1\right)\left(x-1\right)\)

\(\Leftrightarrow\left(9x^2-4\right)\left(x+1\right)-\left(3x+2\right)\left(x+1\right)\left(x-1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left[9x^2-4-\left[\left(3x+2\right)\left(x-1\right)\right]\right]=0\)

\(\Leftrightarrow\left(x+1\right)\left[9x^2-4-\left(3x^2-3x+2x-2\right)\right]=0\)

\(\Leftrightarrow\left(x+1\right)\left(9x^2-4-3x^2+3x-2x+2\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(6x^2+x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+1=0\\6x^2+x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\\left(2x-1\right)\left(3x+2\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{-2}{3}\\x=\dfrac{1}{2}\end{matrix}\right.\)

Vậy \(x\in\left\{1;\dfrac{-2}{3};\dfrac{1}{2}\right\}\)

b)

\(\left(x-1\right)^2-1+x^2=\left(1-x\right)\left(x+3\right)\)

\(\Leftrightarrow x^2-2x+1-1+x^2=x+3-x^2-3x\)

\(\Leftrightarrow2x^2-2x=x^2-2x+3\)

\(\Leftrightarrow3x^2=3\)

\(\Leftrightarrow x^2=1\)

\(\Leftrightarrow x=\left(\pm1\right)^2\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)

Vậy \(x\in\left\{1;-1\right\}\)

11 tháng 1 2022

\(a.\left(3x+2\right)\left(x^2-1\right)=\left(9x^2-4\right)\left(x+1\right)\)

\(\Leftrightarrow\left(3x+2\right)\left(x+1\right)\left(x-1\right)=\left(3x-2\right)\left(3x+2\right)\left(x+1\right)\)

\(\Leftrightarrow x-1=3x-2\)

\(\Leftrightarrow2x=1\)

\(\Leftrightarrow x=\dfrac{1}{2}\)

c: =>x-3=0

hay x=3

d: \(\Leftrightarrow\left(3x-1\right)\cdot\left(x^2+2-7x+10\right)=0\)

\(\Leftrightarrow\left(3x-1\right)\left(x-3\right)\left(x-4\right)=0\)

hay \(x\in\left\{\dfrac{1}{3};3;4\right\}\)

11 tháng 1 2022

 \(\left(3x+2\right)\left(x^2-1\right)=\left(9x^2-4\right)\left(x+1\right).\)

\(\Leftrightarrow\left(3x+2\right)\left(x-1\right)\left(x+1\right)-\left(3x-2\right)\left(3x+2\right)\left(x+1\right)=0.\)

\(\Leftrightarrow\left(3x+2\right)\left(x+1\right)\left(x-1-3x+2\right)=0.\)

\(\Leftrightarrow\left(3x+2\right)\left(x+1\right)\left(-2x+1\right)=0.\)

\(\Leftrightarrow\left[{}\begin{matrix}3x+2=0.\\x+1=0.\\-2x+1=0.\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{2}{3}.\\x=-1.\\x=\dfrac{1}{2}.\end{matrix}\right.\)

c: =>(x-3)(x2+3x+5)=0

=>x-3=0

hay x=3

d: =>(3x-1)(x2+2-7x+10)=0

=>(3x-1)(x-3)(x-4)=0

hay \(x\in\left\{\dfrac{1}{3};3;4\right\}\)

Giải phương trình chứa ẩn ở mẫu:a) 4x 2/3x-6-x/2-x=1 3x/2x-4b) x-3/x 3-x 3/x-3=3/x2-9Các bạn hãy giúp mik với:))

26 tháng 2 2021

Bạn đừng có copy bài mình như thế ko tốt đâu:((