Cho ΔMNP có MN=12cm, MP=20cm, I lad trung điểm NP, MI=8cm. Tính NP.
Nhờ mn giải nhanh giùm mình một tí ạ! Xin cảm ơn
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔMNP có MI là phân giác
nên IN/IP=MN/MP=3/5
b: Đề sai rồi bạn
Tam giác MNP có:
NP2 = MN2 + MP2 (52 = 32 + 42)
=> tam giác MNP vuông tại M (định lý Pytago đảo) có MI là đường trung tuyến.
=> MI = NP/2
mà IP = NP/2 (I là trung điểm của NP)
=> MI = IP
=> Tam giác IMP cân tại I
=> IMP = IPM
Tam giác MNP vuông tại M có:
MNP + MPN = 900
500 + MPN = 900
MPN = 900 - 500
MPN = 400
Tam giác IMP có:
MIP + IMP + IPM = 1800
MIP + IPM + IPM = 1800
MIP + 2 . IPM = 1800
MIP + 2 . 400 = 1800
MIP + 800 = 1800
MIP = 1800 - 800
MIP = 1000
a: Xét ΔMIN vuông tại I và ΔMIP vuông tại I có
MN=MP
MI chung
=>ΔMIN=ΔMIP
b: Xét ΔMEI vuông tại E và ΔMFI vuông tại F có
MI chung
góc EMI=góc FMI
=>ΔMEI=ΔMFI
=>ME=MF
IN=IP=6/2=3cm
=>MI=4cm
Xét ΔMNP có
A là trung điểm của MN
B là trung điểm của NP
Do đó: AB là đường trung bình của ΔMNP
Suy ra: \(AB=\dfrac{MP}{2}=\dfrac{20}{2}=10\left(cm\right)\)
Xét ΔMNP có
B là trung điểm của NP
C là trung điểm của MP
Do đó: BC là đường trung bình của ΔMNP
Suy ra: \(BC=\dfrac{MN}{2}=\dfrac{12}{2}=6\left(cm\right)\)
Xét ΔMNP có
A là trung điểm của MN
C là trung điểm của MP
Do đó: AC là đường trung bình của ΔMNP
Suy ra: \(AC=\dfrac{NP}{2}=\dfrac{18}{2}=9\left(cm\right)\)
Áp dụng PTG: \(NP=\sqrt{MN^2+MP^2}=10\left(cm\right)\)
Vì MI là trung tuyến ứng cạnh huyền nên \(MI=\dfrac{1}{2}NP=5\left(cm\right)\)
a: Xét ΔMNP có MN=MP
nên ΔMNP cân tại M
hay \(\widehat{N}=\widehat{P}\)
Xét ΔMIP có
MP-MI<IP<MP+MI
=>12<IP<28(1)
Xét ΔMIN có
MN-MI<NI<MN+MI
=>4<IP<20(2)
Từ (1) và (2) suy ra 4<IP<20
Nếu IP=16 thì NP=32(Ko thỏa mãn vì 32=12+20)
Nếu IP=4 thì NP=8(ko thỏa mãn vì 12+8=20)
=>5<IP<15
=>10<NP<30