Cho tam giác ABC cận tại A, D là điểm nằm trên cạnh AC. Đường thẳng qua D và song song với AB cắt BC ở E. Chứng minh rằng tam giác DEC là tam giác cân
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b1 :
DE // AB
=> góc ABC = góc DEC (đồng vị)
góc ABC = góc ACB do tam giác ABC cân tại A (gt)
=> góc DEC = góc ACB
=> tam giác DEC cân tại D (dh)
b2:
a, tam giác ABC => góc A + góc B + góc C = 180 (đl)
góc A = 80; góc B = 50
=> góc C = 50
=> góc B = góc C
=> tam giác ABC cân tại A (dh)
b, DE // BC
=> góc EDA = góc ABC (slt)
góc DEA = góc ECB (dlt)
góc ABC = góc ACB (Câu a)
=> góc EDA = góc DEA
=> tam giác DEA cân tại A (dh)
ta có tam giac ABC cân=>góc B=góc C . BÉ//D=>góc EBD= góc D1( so le trong ). Mà góc D=gốc FDC( đối đỉnh) <=>góc EBD=góc FDC .Mà góc B = góc C . Nên góc C=góc FDC. tam giác FCD cân tại F
tam giác EBD nè : ta có góc BED=góc EDF( so le trong) , góc CFD= góc EDF (so le trong ) <=> góc BED= góc EDF Nên: góc BED= góc CFD. và góc B= góc C . Nên góc EDB=góc FDC ( đ/l trong 1 tam giác ).Mà góc FDC=góc B. Nên góc B=góc EDB. Vậy tam giác EBD cân tại E
a: Xét tứ giác BDEM có
DE//BM
BD//EM
Do đó: BDEM là hình bình hành
Suy ra: DE=BM
mà DE=BC/2
nên BM=BC/2
hay M là trung điểm của BC
Xét ΔADE và ΔEMC có
\(\widehat{A}=\widehat{CEM}\)
DE=MC
\(\widehat{ADE}=\widehat{EMC}\)
Do đó: ΔADE=ΔEMC
b: Xét ΔABC có
DE//BC
nên AD/AB=DE/BC
=>AD/AB=1/2
=>AD=1/2AB
hay D là trung điểm của AB
BÀI NÀY MÌNH KO CHÈN ĐƯỢC HÌNH MONG BẠN THÔNG CẢM !!!
a. Xét tứ giác AEDF có: AF // DE
AE // DF
\(\Rightarrow\) AEDF là hình bình hành
\(\Rightarrow\)AD cắt EF tại trung điểm mỗi đường.
Mà O là giao của AD và EF
\(\Rightarrow\) O là trung điểm AD
Mà \(\Delta AHD\) vuông tại H
\(\Rightarrow\) HO = AO
Do đó \(\Delta AOH\) cân tại O
Ta có:
DE // AB (gt).
=> Góc B = Góc DEC (2 góc ở vị trí đồng vị).
Mà Góc B = Góc C (Tam giác ABC cân tại A).
=> Góc DEC = Góc C.
=> Tam DEC là tam giác cân tại D.
Xét tam giác \(ABC\) :
- Tam giác \(ABC\) cân tại \(A\) có \(DE\text{/ / }AB\)
\(\Rightarrow\) Góc \(A=CDE\) và góc \(B=CED\)
Mà góc \(A=B\)( tam giác \(ABC\) cân tại \(A\) )
- Góc \(CDE=CED\)
- \(CDE\) cân tại C