Cho a,b>0 VA a+b=1 chung minh rang (a+1/a)^2+(b+1/b)^2>/25/2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Áp dụng BĐT Bunhiacopxky:
\([(a+\frac{1}{a})^2+(b+\frac{1}{b})^2](1^2+1^2)\geq (a+\frac{1}{a}+b+\frac{1}{b})^2=(1+\frac{1}{a}+\frac{1}{b})^2\)
\(\Rightarrow (a+\frac{1}{a})^2+(b+\frac{1}{b})^2\geq \frac{1}{2}(1+\frac{1}{a}+\frac{1}{b})^2\)
Tiếp tục áp dụng BDDT Bunhiacopxky:
$\frac{1}{a}+\frac{1}{b}\geq \frac{4}{a+b}=4$
\(\Rightarrow (a+\frac{1}{a})^2+(b+\frac{1}{b})^2\geq \frac{1}{2}(1+\frac{1}{a}+\frac{1}{b})^2\geq \frac{1}{2}(1+4)^2=12,5\)
Ta có đpcm
Dấu "=" xảy ra khi $a=b=\frac{1}{2}$
\(a^2+b^2\ge2ab\)
\(\Rightarrow a^2-2ab+b^2\ge0\)
\(\Rightarrow\left(a-b\right)^2\ge0\) (luôn đúng)
Vậy \(a^2+b^2\ge2ab\)
Áp dụng vào ta được :
\(a^2+1\ge2a\)
\(b^2+1\ge2b\)
\(c^2+1\ge2c\)
\(\Rightarrow\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)\ge2a.2b.2c=8abc\)(ĐPCM)
Ta biến đổi 1 tí nhé
\(\frac{4}{a}+\frac{5}{b}+\frac{3}{c}\ge4\left(\frac{3}{a+b}+\frac{2}{b+c}+\frac{1}{c+a}\right)\)
\(\Leftrightarrow\frac{3}{a+b}+\frac{2}{b+c}+\frac{1}{a+c}\le\frac{1}{4}\left(\frac{4}{a}+\frac{5}{b}+\frac{3}{c}\right)\)
Tới đây dễ dàng áp dụng BĐT \(\frac{4}{x+y}\le\frac{1}{x}+\frac{1}{y}\)
\(\Leftrightarrow\frac{3}{a+b}\le\frac{3}{4}.\frac{1}{a}+\frac{3}{4}.\frac{1}{b}\left(1\right)\)
\(\Leftrightarrow\frac{2}{b+c}\le\frac{1}{2}.\frac{1}{b}+\frac{1}{2}.\frac{1}{c}\left(2\right)\)
\(\Leftrightarrow\frac{1}{a+c}\le\frac{1}{4}.\frac{1}{a}+\frac{1}{4}.\frac{1}{c}\left(3\right)\)
Cộng vế với vế của (1), (2), (3) suy ra
\(\frac{3}{a+b}+\frac{2}{b+c}+\frac{1}{a+c}\le\frac{3}{4}\cdot\frac{1}{a}+\frac{3}{4}\cdot\frac{1}{b}+\frac{1}{2}\cdot\frac{1}{b}+\frac{1}{2}\cdot\frac{1}{c}+\frac{1}{4}\cdot\frac{1}{a}+\frac{1}{4}\cdot\frac{1}{c}\)
\(\Leftrightarrow\frac{3}{a+b}+\frac{2}{b+c}+\frac{1}{a+c}\le\frac{1}{a}+\frac{5}{4}\cdot\frac{1}{b}+\frac{3}{4}\cdot\frac{1}{b}\)
\(\Leftrightarrow\frac{3}{a+b}+\frac{2}{b+c}+\frac{1}{a+c}\le\frac{1}{4}\left(\frac{4}{a}+\frac{5}{b}+\frac{3}{c}\right)\)
\(\Leftrightarrow Dpcm\)
a/ Ta có \(\dfrac{\left(a+b\right)^2}{4}\ge ab\Rightarrow\left(a+b\right)^2\ge4\Rightarrow a+b\ge2\)
\(\left(a+1\right)\left(b+1\right)=ab+\left(a+b\right)+1=a+b+2\ge2+2=4\) (đpcm)
Dấu "=" xảy ra khi \(a=b=1\)
b/ Áp dụng BĐT \(ab\le\dfrac{\left(a+b\right)^2}{4}\Rightarrow ab\le\dfrac{1}{4}\Rightarrow\dfrac{1}{ab}\ge4\)
Lại áp dụng BĐT: \(x^2+y^2\ge\dfrac{\left(x+y\right)^2}{2}\) cho 2 số dương ta được:\(\left(a+\dfrac{1}{b}\right)^2+\left(b+\dfrac{1}{a}\right)^2\ge\dfrac{1}{2}\left(a+b+\dfrac{1}{a}+\dfrac{1}{b}\right)^2=\dfrac{1}{2}\left(1+\dfrac{1}{ab}\right)^2\ge\dfrac{1}{2}\left(1+4\right)^2=\dfrac{25}{2}\)
Dấu "=" xảy ra khi \(a=b=\dfrac{1}{2}\)
2. Áp dụng bất đẳng thức Cô - si cho 3 số dương \(\frac{a}{b},\frac{b}{c},\frac{c}{a}\)ta có
\(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\ge3\sqrt[3]{\frac{a}{b}.\frac{b}{c}.\frac{c}{a}}\)\(=3\)
Dấu "=" xảy ra <=> a = b = c
Ta có A = 1 + 2 +3 + ... + n
= n(n+1) : 2
lại có n(n+1) là tích chẵn
=> n(n+1) \(⋮\)2
=> a \(⋮\)2
=> a chẵn
mặt khác, 2n + 1 \(⋮̸\)2
=> 2n + 1 là số lẻ
=> b lẻ
Ngoài ra ta nhận thấy ƯCLN của 1 số lẻ và 1 số chẵn = 1
=> chúng là 2 số nguyên tố cùng nhau
tương tự như vậy a và b là 2 số nguyên tố cùng nhau (đpcm)
Lời giải:
Áp dụng BĐT AM-GM cho các số dương ta có:
\(\frac{a^2}{b-1}+4(b-1)\geq 2\sqrt{\frac{a^2}{b-1}.4(b-1)}=4a\)
\(\frac{b^2}{a-1}+4(a-1)\geq 2\sqrt{\frac{b^2}{a-1}.4(a-1)}=4b\)
Cộng theo vế:
\(\frac{a^2}{b-1}+\frac{b^2}{a-1}+4(a-1)+4(b-1)\geq 4a+4b\)
\(\Rightarrow \frac{a^2}{b-1}+\frac{b^2}{a-1}\geq 8\)
Ta có đpcm
Dấu "=" xảy ra khi $a=b=2$