Chứng minh rằng đa thức P(x) có ít nhất 2 nghiệm biết rằng:
X.P(x+2)-(x-3).P(x-1)=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có nghiệm của đa thức là giá trị của biến làm đa thức có giá trị bằng 0.
nếu f(a) = 0 => a là nghiệm của f(x).
do: x.f(x + 1) = (x + 2).f(x) (1) đúng với mọi x.
+ thay x = 0 vào (1) ta được
0.f(0 + 1) = (0 + 2).f(0)
=> 0 = 2.f(0)
=> f(0) = 0
do f(0) = 0 => x = 0 là 1 nghiệm của đa thức trên. (2)
+ thay x = -2 vào (1) ta được:
(-2).f(-2 + 1) = (-2 + 2).f(-2)
=> (-2).f(-1) = 0.f(-2)
=> (-2).f(-1) = 0
=> f(-1) = 0
=> x = -1 là 1 nghiệm của đa thức trên (3)
từ (2) và (3) => đa thức đã cho có ít nhất 2 nghiệm là x = 0 và x = -2
Ta có nghiệm của đa thức là giá trị của biến làm đa thức có giá trị bằng 0.
Nếu f(a) = 0 => a là nghiệm của f(x).
Do: x.f(x + 1) = (x + 2).f(x) (1) đúng với mọi x.
+ Thay x = 0 vào (1) ta được
0.f(0 + 1) = (0 + 2).f(0)
=> 0 = 2.f(0)
=> f(0) = 0
Do f(0) = 0 => x = 0 là 1 nghiệm của đa thức trên. (2)
+ Thay x = -2 vào (1) ta được:
(-2).f(-2 + 1) = (-2 + 2).f(-2)
=> (-2).f(-1) = 0.f(-2)
=> (-2).f(-1) = 0
=> f(-1) = 0
=> x = -1 là 1 nghiệm của đa thức trên (3)
Từ (2) và (3) => đa thức đã cho có ít nhất 2 nghiệm là x = 0 và x = -2
+Với x=2 thay vào ta được
2.P(2+1)=(2-2).P(2) =>2.P(3)=0.P(2) => 2.P(2) =0 =>P(2)=0
Suy ra x=2 là một nghiệm của đa thức P(x).
+Với x=0 thay vào ta được
0.P(0+1)=(0-2).P(0) =>0.P(1)= -2.P(0) => 0= -2.P(0) =>P(0)=-2
Suy ra x=0 là một nghiệm của đa thức P(x).
Vậy đa thức P(x) có ít nhất 2 nghiệm
\(x.P\left(x\right)=\left(x^2-9\right).P\left(x\right)\)
\(\Rightarrow x.P\left(x\right)-\left(x^2-9\right)P\left(x\right)=0\)
Thay x = 0 ta được :
\(0.P\left(0\right)-\left(0^2-9\right)P\left(0\right)=0\)
\(\Rightarrow9P\left(0\right)=0\)
\(\Rightarrow P\left(0\right)=0\) => x = 0 là nghiệm của đa thức P(x) (1)
Thay x = - 3 ta được :
\(-3.P\left(-3\right)-\left[\left(-3\right)^2-9\right].P\left(-3\right)=0\)
\(\Rightarrow-3.P\left(-3\right)=0\)
\(\Rightarrow P\left(-3\right)=0\) => x = - 3 là nghiệm của đa thức P(x) (2)
Thay x = 3 ta được :
\(3.P\left(3\right)-\left(3^2-9\right).P\left(x\right)=0\)
\(\Rightarrow3.P\left(3\right)=0\)
\(\Rightarrow P\left(3\right)=0\) => x = 3 là nghiệm của đa thức P(x) (3)
Từ (1) ; (2) ; (3) => P(x) có ít nhất 3 nghiệm (đpcm)
Từ đẳng thức trên=>
xP(x+2)=(x-3)P(x-1)
Thay x=0 và được 0.P(x+2)=(0-3).P(0-1)
=>0=-3.P(-1) mà -3 khác 0
=>P(-1)=0
=> -1 là nghiệm của P(x)
Sau đó bạn thay x=3 vào rồi làm tương tự như trên nha
Những loại bài như thế này chỉ có cách đoán nghiệm thôi bạn ạ