Chứng minh rằng tích của ba số tự nhiên liên tiếp luôn chia hết cho 6.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
gọi 3 số tự nhiên Liên tiếp là: a,a+1,a+2. => a+(a+1)(a+2)=a+a+1+a+2=3a+3. 3a chia hết cho 3,3 cũng chia hết cho 3 => tổng này luôn luôn chia hết cho 3
gọi 3 số tự nhiên Liên tiếp là: a,a+1,a+2.
=> a+(a+1)(a+2)=a+a+1+a+2=3a+3.
3a chia hết cho 3,3 cũng chia hết cho 3
=> tổng này luôn luôn chia hết cho 3.
n(n+1)(n+2)
Với n=2k
2k(2k+1)(2k+2) chia hết 2
Với n=2k+1
(2k+1)(2k+2)(2k+3)=(2k+1).2(k+1)(2k+3) chia hết 2
=> n(n+1)(n+2) chia hết 2 (1)
Với n=3k
3k(3k+1)(3k+2) chia hết 3
Với n=3k+1
(3k+1)(3k+2).3(k+1) chia hết cho 3
Với n=3k+2
(3k+2)(3k+3)(3k+4) chia hết 3
=> n(n+1)(n+2) chia hết cho 3 (2)
(1);(2)=> n(n+1)(n+2) chia hết 6
TL:
Gọi 3 số tự nhiên liên tiếp là a;a+1 và a+2
Tích 3 số đó là: a(a+1)(a+2)= a+a+a+1+2
= 3a+ 3
Vì 3a chia hết cho3; 3 chia hết cho 3 nên 3a+3 chia hết cho 3
=> a(a+1)(a+2) chia hết cho 3
- Nếu a chẵn thì a(a+1)(a+2) chia hết cho 2
-Nếu a lẻ thì a+1 chia hết cho 2=> a(a+1)(a+2)
Vậy a(a+1)(a+2) chia hết cho 2
Mặt khác (2,3)=1 nên a(a+1)(a+2) chia hết cho 6
HT!~!
a, Gọi 3 số tự nhiên liên tiếp là n; n+1 và n+2
Tổng chúng: n+(n+1)+(n+2)= 3n+3\(⋮\) 3 \(\forall n\in N\) (đpcm)
b, Gọi 4 số tự nhiên liên tiếp là n; n+1; n+2; n+3
Tổng chúng: \(n+\left(n+1\right)+\left(n+2\right)+\left(n+3\right)=4n+6⋮̸4\forall n\in N\left(Vì:4n⋮4;6⋮̸4\right)\left(đpcm\right)\)
c, Hai số tự nhiên liên tiếp là k và k+1
Tích chúng: k(k+1) . Nếu k chẵn thì k+1 lẻ => Tích chẵn, chia hết cho 2
Nếu k lẻ thì k+1 chẵn => Tích chẵn, chia hết cho 2
(ĐPCM)
d, Ba số tự nhiên liên tiếp là m;m+1 và m+2
Tích chúng: m(m+1)(m+2)
+) TH1: Nếu m chia hết cho 3 => Tích 3 số chia hết cho 3
+) TH2: Nếu m chia 3 dư 1 => m+2 chia hết cho 3 => Tích 3 số chia hết cho 3
+) TH3: Nếu m chia 3 dư 2 => m+1 chia hết cho 3 => Tích 3 số chia hết cho 3
=> Kết luận: Tích 3 số tự nhiên liên tiếp chia hết cho 3 (đpcm)
Gọi 3 số tự nhiên liên tiếp đó là a,a+1,a+2.
Ta có:(a+a+1+a+2)=3a+3
Mà 3a chia hết cho 3
3 chia hết cho 3
Suy ra 3a+3 chia hết cho 3
vì 3 số có trung bình cộng chia được cho 3 nên phải chia được cho 3
1:vì 2 số TNLT có 1 số lẻ & 1 số chẵn => trong 2 số đó sẽ có 1 số chia hết cho 2
1. Trong 2 số tự nhiên liên tiếp có ít nhất 1 số chia hết cho 2
=> tích 2 số đó chia hết cho 2.
2. Trong 2 số tự nhiên liên tiếp có ít nhất 1 số chia hết cho 2;
trong 3 số tự nhiên liên tiếp có it nhất 1 số chia hết cho 3
Mà (2;3) = 1
=> Tích 3 số đó chia hết cho 2.3 = 6.
trong 3 số tự nhiên liên tiếp sẽ có 1 số chẵn nên :
=> tích của 3 số tự nhiên liên tiếp chia hết cho 2 (1)
trong 3 số tự nhiên liên tiếp sẽ có 1 số chia hết cho 3 nên:
=> tích của 3 số tự nhiên liên tiếp chi a hết cho 3 (2)
từ (1) và (2) ta có :
tích của 3 số tự nhiên liên tiếp sẽ chia hết cho 6 vì 6 = 2 . 3
Gọi số đó là A
Trong 3 số tự nhiên liên tiếp luôn có nhiều hơn hoặc bằng 2 số chẵn=>A chia hết cho 2 (1)
Trong 3 số tự nhiên liên tiếp luôn có 1 số chia hết cho 3=>A chia hết cho 3 (2)
Từ (1)(2) mà 3.2=6=>A chia hết cho 6(đpcm)