Giải phương trình: \(8x^3+x-7=^3\sqrt{x+7}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
ĐKXĐ: $x\geq -3,5$
PT \(\Leftrightarrow (\sqrt{2x+7}-1)+(\sqrt[3]{x+4}-1)+(x^2+8x+15)=0\)
\(\Leftrightarrow \frac{2(x+3)}{\sqrt{2x+7}+1}+\frac{x+3}{\sqrt[3]{(x+4)^2}+\sqrt[3]{x+4}+1}+(x+3)(x+5)=0\)
\(\Leftrightarrow (x+3)\left[\frac{2}{\sqrt{2x+7}+1}+\frac{1}{\sqrt[3]{(x+4)^2}+\sqrt[3]{x+4}+1}+(x+5)\right]=0\)
Với $x\geq -3,5$ dễ thấy biểu thức trong ngoặc vuông $>0$
Do đó: $x+3=0$
$\Leftrightarrow x=-3$ (thỏa mãn)
Đk: `1 <=x <=7`.
Đặt `sqrt(7-x) = a, sqrt(x-1) = b`.
Phương trình trở thành: `b^2+1 + 2a = 2b + ab + 1`.
`<=> b^2 + 2a = 2b + ab.`
`<=> b(b-2) = a(b-2)`
`<=> (b-a)(b-2) = 0`
`<=> a =b` hoặc `b = 2.`
`@ a = b => 7 - x = x - 1`
`<=> 8 = 2x <=> x = 4`.
`@ b = 2 => sqrt(x-1) = 2`
`<=> x - 1 = 4`
`<=> x = 5`.
Vậy `x = 4` hoặc `x = 5`.
\(\text{ĐKXĐ:}1\le x\le7\)
PT đã cho tương đương với:
\(x-1-2\sqrt{x-1}+2\sqrt{7-x}-\sqrt{x-1}.\sqrt{7-x}=0\)
\(\Leftrightarrow\sqrt{x-1}\left(\sqrt{x-1}-2\right)-\sqrt{7-x}\left(\sqrt{x-1}-2\right)=0\)
\(\Leftrightarrow\left(\sqrt{x-1}-\sqrt{7-x}\right)\left(\sqrt{x-1}-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-1}=\sqrt{7-x}\\\sqrt{x-1}=2\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x-1=7-x\\x-1=4\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=4\left(tm\right)\\x=5\left(tm\right)\end{matrix}\right.\)
Vậy pt có tập nghiệm \(S=\left\{4;5\right\}\)
Ta viết lại phương trình thành:
\(\left(2x-1\right)^3-\left(x^2-x-1\right)=\left(x+1\right)\sqrt[3]{\left(x+1\right)\left(2x-1\right)+x^2-x-1}\)
Đặt: \(a=2x-1;b=\sqrt[3]{\left(x+1\right)\left(2x-1\right)+x^2-x-1}=\sqrt[3]{3x^2-2}\) ta thu được hệ phương trình:
\(\hept{\begin{cases}a^3-\left(x^2-x+1\right)=\left(x+1\right)b\\b^3-\left(x^2-x+1\right)=\left(x+1\right)a\end{cases}}\)
Trừ 2 pt của hệ cho nhau ta được: \(\left(a-b\right)\left(a^2+ab+b^2+x+1\right)=0\)
Trường hợp 1: \(a=b\) ta có:
\(2x-1=\sqrt[3]{3x^2-2}\Leftrightarrow8x^3-15x^2+6x+1=0\Leftrightarrow\orbr{\begin{cases}x=1\\x=-\frac{1}{8}\end{cases}}\)
Trường hợp 2: \(a^2+ab+b^2+x+1=0\Leftrightarrow\left(a+\frac{b}{2}\right)^2+\frac{3}{4}\left(2x-1\right)^2+x+1=0\)
\(\Leftrightarrow4\left(a+\frac{b}{2}\right)^2+4x^2+2\left(2x-1\right)^2+5=0\left(vn\right)\)
Vậy pt có 2 nghiệm là: \(x=1;x=-\frac{1}{8}\)
đặt \(\sqrt{7-x}=a\) , \(\sqrt{x-1}=b\)
rồi thay vào và ptđttnt
ĐK: \(1\le x\le7\)
\(x+2\sqrt{7-x}=2\sqrt{x-1}+\sqrt{-x^2+8x-7}+1\)
\(x-1+2\sqrt{7-x}-2\sqrt{x-1}-\sqrt{-x^2+8x-7}=0\)
Đặt \(\sqrt{x-1}=a;\sqrt{7-x}=b\left(a,b\ge0\right)\)
\(pt\Rightarrow a^2+2b-2a-ab=0\Leftrightarrow\left(a^2-ab\right)-\left(2a-2b\right)=0\)
\(\Leftrightarrow\left(a-2\right)\left(a-b\right)=0\Leftrightarrow\orbr{\begin{cases}a-2=0\\a=b\end{cases}}\)
TH1: \(a-2=0\Rightarrow\sqrt{x-1}=2\Leftrightarrow x=5\left(tm\right)\)
TH2: \(a=b\Rightarrow\sqrt{x-1}=\sqrt{7-x}\Rightarrow x=4\left(tm\right)\)
Vậy pt có 2 nghiệm x = 4 hoặc x = 5.
\(b,x+2\sqrt{7-x}=2\sqrt{x-1}+\sqrt{-x^2+8x-7}+1\)
Đặt: \(\hept{\begin{cases}\sqrt{x-1}=a\\\sqrt{7-x}=b\end{cases}}\)Ta được pt mới: \(a^2+2b=2a+ab\Leftrightarrow\left(a-2\right)\left(a-b\right)=0\)
- Với \(a=2\Rightarrow x=5\)
- Với \(a=b\Rightarrow x=2\)
cái thứ 1 nhân liên hợp đi
sau đó nhân chéo lên vs vế phải
rồi rút gọn
bình lên
giải pt là đc
Ta có: \(8x^3+2x=\sqrt[3]{x+7}+x+7\)
Đặt \(\sqrt[3]{x+7}=t\)
\(\Rightarrow8x^3+2x=t+t^3\)
\(\Leftrightarrow\left(2x-t\right)\left(4x^2+2xt+t^2\right)+\left(2x-t\right)=0\)
\(\Leftrightarrow\left(2x-t\right)\left(4x^2+2xt+t^2+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x=t\\4x^2+2xt+t^2+1=0\end{matrix}\right.\)
Với 2x=t \(\Leftrightarrow2x=\sqrt[3]{x+7}\Leftrightarrow8x^3-x-7=0\)
\(\Leftrightarrow\left(x-1\right)\left(8x^2+8x+7\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\8x^2+8x+7=0\left(loại\right)\end{matrix}\right.\)
Với \(4x^2+2xt+t^2+1=0\)
Do \(4x^2+2xt+t^2+1=\left(x+t\right)^2+3x^2+1\ge1>0\)
⇒ ptvn