Giải phương trình sau:
x+x^2= 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tham khảo thử đúng không nha mn
\(x^2+x-y^2=0\)
⇔ \(\left(x^2-y^2\right)+x=0\)
⇔ \(\left(x-y\right)\left(x+y\right)+x=0\)
⇒ \(x-y=0\) hoặc \(x+y=0\) hoặc \(x=0\)
⇒ \(x=y=0\)
`x(x - 4) - 3x + 12 = 0`
`<=> x(x - 4) + 3(x - 4) = 0`
`<=> (x + 3)(x - 4) = 0`
`<=>` $\left[\begin{matrix} x + 3 = 0\\ x - 4 = 0\end{matrix}\right.$
`<=>` $\left[\begin{matrix} x = -3\\ x = 4\end{matrix}\right.$
Vậy `S = {-3; 4}`
ta có x3-6x2+11x-6=0
hay x3-x2-5x2-+5x+6x-6=0
=>x(x-1) - 5x(x-1)+6(x-1)=0
(x-1).(x-5x+6)=0 <=> (x-1)(x2-2x-3x+6)=0
(x-1)(x(x-2)-3(x-2)=0
(x-1)(x-2)(x-3)=0 <=> x-1=0 hoặc x-2=0 hoặc x-3=0
<=> x=1 hoặc x=2 hoặc x=3
vậy S ={1;2;3}
x(x2+6x+9) - 3x= x3+6x2+12x+8+1
\(\Leftrightarrow\)x3+6x2+9x-3x=x3+6x2+12x+9
\(\Leftrightarrow\)6x=12x+9
\(\Leftrightarrow\)6x=-9
\(\Leftrightarrow\)x=-3/2
Vậy phương trình có 1 nghiệm duy nhất x=-3/2
x(x + 3)^2 - 3x = (x + 2)^3 + 1
<=> x(x^2 + 6x + 9) = x^3 + 6x^2 + 12x + 8 + 1
<=> x^3 + 6x^2 + 9x = x^3 + 6x^2 + 12x + 9
<=> 3x + 9 = 0
<=> 3x = -9
<=> x = -3
Thay x=3 vào pt,ta được:
3^2+(m^2-2m)*3-9+12m=0
=>3m^2-6m+12m=0
=>3m^2+6m=0
=>m=0 hoặc m=-2
\(\dfrac{x+5}{x-5}=\dfrac{5}{x^2-5x}+\dfrac{1}{x}\)
\(\Leftrightarrow\dfrac{x+5}{x-5}=\dfrac{5}{x\left(x-5\right)}+\dfrac{1}{x}\)
ĐKXĐ : \(\left\{{}\begin{matrix}x\ne0\\x-5\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne0\\x\ne5\end{matrix}\right.\)
Ta có : \(\dfrac{x+5}{x-5}=\dfrac{5}{x\left(x-5\right)}+\dfrac{1}{x}\)
\(\Leftrightarrow\dfrac{x\left(x+5\right)}{x\left(x-5\right)}=\dfrac{5}{x\left(x-5\right)}+\dfrac{x-5}{x\left(x-5\right)}\)
`=> x (x+5) = 5 +x-5`
`<=> x^2 +5x - 5-x+5=0`
`<=> x^2 +4x =0`
`<=> x(x+4)=0`
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x+4=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\left(l\right)\\x=-4\end{matrix}\right.\)
Vậy phương trình có nghiệm `x=-4`
sửa đề :
\(x^3-3x^2+3x-1=0\)
\(\Leftrightarrow\left(x-1\right)^3=0\Leftrightarrow x=1\)
\(x+x^2=0\)
\(\Leftrightarrow x\left(1+x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\1+x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\)
Vậy: Phương trình có tập nghiệm \(S=\left\{0;-1\right\}\)
\(x\left(x+1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\)