Cho hình thoi MNPQ. Gọi O là giao điểm của 2 đường chéo MP và NQ.Biết MN= 10cm và OP= 3cm. Tính diện tích hình thoi MNPQ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) (hình tự vẽ)
Độ dài của đường chéo NQ là: \(2,4\cdot\dfrac{5}{8}=1,5\left(m^2\right)\)
Diện tích tấm bạt: \(\dfrac{1,5\cdot2,4}{2}\)= 1,8 (m2)
b) Độ dài của đoạn thẳng MO: 2,4 : 2=1,2(m)
___________________ AO: 1,2 : 2 =0,6 (m)
Diện tích của tam giác QAN: \(\dfrac{1,5\cdot0,6}{2}=0.45\left(m^2\right)\)
c) Đổi: 1,8 m2 = 180 dm2
Tấm bạt có giá: (180 : 5 ) * 3500 = 126000 (đồng)
diện tích hình thoi ABCD là:
(3*4):2=6 (cm2)
diện tích hình thoi MNPQ là:
(7*4):2=14 (cm2)
gọi O là giao điểm hai đường chéo
ta có MNPQ là hình thoi \(\Rightarrow\) MO = OP = \(\dfrac{1}{2}\) MP = \(\dfrac{1}{2}\) .10 =5
QO = ON = \(\dfrac{1}{2}\) QN = \(\dfrac{1}{2}\) .24 =12
Xét \(\Delta OPN\) có: \(\widehat{O}\) = 900
\(\Rightarrow\) PN = \(\sqrt{ON^2+OP^2}\)
= \(\sqrt{5^2+12^2}\) = 13
giải
độ dài đường chéo MP là:
72 : 4 = 18 (cm)
độ dài đường chéo NQ là:
18 x 2/3 = 12 (cm)
Diện tích hình thoi MNPQ là:
1/2 x ( 18 x 12) = 108 ( cm2)
bằng 108 nhé
vì một cạnh hinh vuông là 18 còn đường chéo thứ2 bằng 18 X 2/3 bằng 12 diện tích là (12 X18) :2 = 108 cm
\(MNPQ\) là hình thoi, \(MP\) ∩ \(NQ\) \(=\) {\({Q}\)}
\(\rightarrow MP\) ⊥ \(PQ\) tại \(O\)
\(\rightarrow OP=OM,OQ=ON\)
Áp dụng định lý Pytago vào \(△ MON\) vuông tại \(O\)
\(\rightarrow MN^2=MO^2+ON^2\)
\(\Leftrightarrow 10^2=3^2+ON^2\)
\(\Leftrightarrow 100=9+ON^2\)
\(\Leftrightarrow ON^2=91\)
\(\Leftrightarrow ON=\sqrt{91}\)
\(\rightarrow QN=2\sqrt{91}\)
Lại có : \(MP=6\) cm
\(\rightarrow S_{MNPQ}=\dfrac{1}{2}.2\sqrt{91}.6=6\sqrt{91}\) (\(cm^2)\)