K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 4 2016

k chko mi kđi mik chỉ cho cách làm nk

13 tháng 1 2022

Cho dù 2016 số có là số nào thì cũng đều có dạng \(n;n+1;n+2;...;n+2016\)

Và ta có \(n+2016-n=2015⋮2015\)

Như vậy trong 2016 số tự nhiên liên tiếp bất kì luôn tồn tại 2 số có hiệu chia hết cho 2015

13 tháng 1 2022

Quên, phải lấy \(n+2015-n=2015\) chứ.

11 tháng 7 2016

Ta đã biết 1 số tự nhiên chia cho 2015 chỉ có thể có 2015 loại số dư là dư 0; 1; 2; 3; ...; 2015

Có 2015 loại số dư mà có 2016 số tự nhiên nên theo nguyên lí Đi - rích - lê sẽ có ít nhất 2 số cùng dư, hiệu của chúng chia hết cho 2015

=> đpcm

Ủng hộ mk nha ^_-

11 tháng 7 2016

Cảm ơn bạn nhé !

18 tháng 1 2015

*Một số tn bất kỳ khi chia cho 2015 có số dư là 1 trong 2014 số :.....

*Sau đó ta chia 1010 thành 1009 nhóm

*Theo nguyên lý Dirichlet ta có 2 trường hợp

Ta có ĐPCM

8 tháng 7 2015

Giả sử 6 số đó tồn tại 1 cặp có cùng tận cùng (Ví dụ 1236, 26), vậy hiệu chia hết cho 5. Thỏa mãn

Giả sử không có cặp số nào cùng tận cùng, vậy các chữ số tận cùng có thể là: 1, 2, 3, 4, 6, 7, 8, 9

Các cặp có hiệu chia hết cho 5 là: 6 - 1, 7 - 2, 8 -3, 9 - 4, nếu bỏ đi 2 số bất kỳ vẫn tồn tại 2 cặp có hiệu chia hết cho 5. CM xong!

19 tháng 9 2016

Ta đã biết 1 số tự nhiên khi chia cho 5 chỉ có thể có 5 loại số dư là dư 0; 1; 2; 3; 4; 5. Có 6 số mà chỉ có 5 loại số dư nên theo nguyên lí Đirichlet sẽ có ít nhất 2 số cùng dư

Hiệu của 2 số này chia hết cho 5

Chứng tỏ với 6 số tự nhiên bất kì, luôn có ít nhất 2 số tự nhiên mà hiệu của chúng chia hết cho 5