K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 1 2018

a, 19+x-(81-97)=-34

         x-(81-97)=(-34)-19

         x-81+97 =-15

         x+97     =(-15)+81

         x           =36-97

         x           =-61

b, x=98       

24 tháng 4 2016

sai đề : phải là: a1.a14+a14.a12<a1.a12  nếu thế thì giải như sau

Ta có : a1 + (a2 + a3 + a4) + … + (a11 + a12 + a13) + a14 + (a15 + a16 + a17) + (a18 + a19 + a20) < 0 ; a1 > 0 ; a2 + a3 + a4 > 0 ; … ; a11 + a12 + a13 > 0 ; a15 + a16 + a17 > 0 ; a18 + a19 + a20 > 0 => a20 < 0.

Cũng như vậy : (a1 + a2 + a3) + … + (a10 + a11 + a12) + (a13 + a14) + (a15 + a16 + a17) + (a18 + a19 + a20) < 0 => a13 + a14 < 0.

Mặt khác, a12 + a13 + a14 > 0 => a12 > 0.

Từ các điều kiện a1 > 0 ; a12 > 0 ; a14 < 0 => a1.a14 + a14a12 < a1.a12 [dpcm]

13 tháng 1 2017

a) đ

b) s

c) s

d) s

e) s

f) s

29 tháng 7 2017

Đ 

S

S

S

mk học bài này rồi 

k mk nha tuy là người sau

cám ơn

17 tháng 7 2016

Ta có:

\(2x^2+x=3y^2+y\)

\(\Leftrightarrow\)  \(\left(x-y\right)\left(2x+2y+1\right)=y^2\)  

Gọi  \(d\)  là  \(ƯCLN\left(x-y,2x+2y+1\right)\)  (với  \(d\in N^{\text{*}}\)). Khi đó, ta suy ra

\(\hept{\begin{cases}\left(x-y\right)\leftrightarrow\left(1\right)\\\left(2x+2y+1\right)\leftrightarrow\left(2\right)\end{cases}}\)  chia hết cho  \(d\)  \(\Rightarrow\)  \(\left(x-y\right)\left(2x+2y+1\right)\)  chia hết cho  \(d^2\)

Hay  \(y^2\)  chia hết cho  \(d^2\)  tức là  \(y\) chia hết cho  \(d\)

Nhưng vì  \(x-y\)   chia hết cho  \(d\)  (theo  \(\left(1\right)\)) nên  \(x\)  cũng phải chia hết cho  \(d\)

\(\Rightarrow\)  \(2x+2y\)  chia hết  cho  \(d\)  \(\left(3\right)\)

Từ  \(\left(2\right)\) và    \(\left(3\right)\)  suy ra  \(1\)  chia hết cho  \(d\)

Do đó,  \(d=1\)  đồng nghĩa với việc  \(\left(x-y,2x+2y+1\right)=1\)

Vậy,  phân số  \(\frac{x-y}{2x+2y+1}\)  tối giản vì cùng  nguyên tố cùng nhau

25 tháng 7 2017

số tư nhiên khác 0 nhỏ hơn 60 là ( tự làm đi)

23 tháng 1 2017

trình rơm lắm thảo ạ

27 tháng 10 2019

Câu hỏi của CTV - Toán lớp 8 - Học toán với OnlineMath