hai vòi nước cùng chảy vào 1 bể cạn. vòi thứ nhất chảy trong 5 giờ . vòi thứ 2 chảy trong 3 giờ thì được 3/4 bể.nếu chảy riêng thì vòi thứ nhất chảy nhanh hơn vòi 2 là 2 giờ. xác định thời gian chảy riêng đầy bể của mỗi vòi
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(y=\frac{1}{x^2+\sqrt{x}}\sqrt{\frac{\int^{ }_{ }^2\vec{^2}}{ }}\)
đổi 3 giờ 36 phút=\(\dfrac{18}{5}\)=3,6 giờ
gọi thời gian vòi 1 và vòi 2 chảy riêng đầy bể lần lượt:x,y(x,y>3,6)
=>hệ pt: \(\left\{{}\begin{matrix}y-x=3\\\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{3,6}\end{matrix}\right.\)
giải hệ pt trên ta tính được \(\left\{{}\begin{matrix}x=6\left(TM\right)\\y=9\left(TM\right)\end{matrix}\right.\)
vậy nếu chảy riêng đầy bể vòi 1 chảy trong 6 giờ
vòi 2 chảy riêng trong 9 giờ
1 giờ vòi 1 và 2 chảy được số phần bể
3/4:9=1/12( bể)
1 giờ vòi 2 và 3 chảy được số phần bể
7/12:5=7/60( bể )
1 giờ vòi 3 và 1 chảy được số phần bể
3/5:6=1/10( bể)
1giowf cả 3 vòi chảy được số phần bể
(1/12+7/60+1/10):2=3/10( bể)
Thời gian cả 3 vòi cùng chảy đầy bể
1:3/10=10/3( giờ)=3 giờ 20 phút
Đáp số: 3 giờ 20 phút
Gọi thời gian vòi thứ nhất chảy một mình đầy bể là x(giờ)
(ĐIều kiện: x>0)
Thời gian vòi thứ hai chảy một mình đầy bể là x+5(giờ)
Trong 1h, vòi thứ nhất chảy được \(\dfrac{1}{x}\left(bể\right)\)
Trong 1h, vòi thứ hai chảy được \(\dfrac{1}{x+5}\left(bể\right)\)
Trong 2h, vòi thứ nhất chảy được \(\dfrac{1}{x}\cdot2=\dfrac{2}{x}\left(bể\right)\)
Trong 3h, vòi thứ hai chảy được \(\dfrac{3}{x+5}\left(bể\right)\)
Theo đề, ta có: \(\dfrac{2}{x}+\dfrac{3}{x+5}=\dfrac{2}{5}\)
=>\(\dfrac{2\left(x+5\right)+3x}{x\left(x+5\right)}=\dfrac{2}{5}\)
=>\(\dfrac{5x+10}{x\left(x+5\right)}=\dfrac{2}{5}\)
=>\(2x\left(x+5\right)=5\left(5x+10\right)\)
=>\(2x^2+10x-25x-50=0\)
=>\(2x^2-15x-50=0\)
=>\(\left[{}\begin{matrix}x=10\left(nhận\right)\\x=-\dfrac{5}{2}\left(loại\right)\end{matrix}\right.\)
vậy: Thời gian chảy một mình đầy bể của vòi thứ nhất là 10 giờ
Thời gian chảy một mình đầy bể của vòi thứ hai là 10+5=15 giờ
gọi 1/x là số nước chảy vào trong 1 h của vòi một
=> ... vòi hai là 1/X+6
ta có:
1/x+1/x+6 = 1/4
=> x bằng 6
. vậy nếu mở riêng từng vòi thì vòi 1 có thời gian là 6h
vòi hai là 10h
II. Gọi x, y lần lượt là thời gian vòi thứ nhất và vòi thứ hai chảy riêng để đầy bể. Điều kiện: x>0, y>0
- Trong 1 giờ: - Vòi 1 chảy được: \(\frac{1}{x}\) (Bể)
- Vòi 2 chảy được: \(\frac{1}{y}\) (bể) Đổi: 3 giờ 36 phút = 18/5 giờ.
- cả hai vòi chảy được: 5/18 (bể). Theo đề bài ta có phương trình: 1/x + 1/y = 5/18 (1)
- Trong 2 giờ vòi 1 chảy được: 2/x (bể). Trong 6 giờ vòi hai chảy được: 6/y (bể).
Theo đề bài ta có phương trình: 2/x + 6/y = 1 (2).
Từ (1) và (2) ta có hệ phương trình: 1/x+ 1/y = 5/18
2/x + 6/y = 1. Giải hệ phương trình trên bằng cách đặt ẩn phụ ta được: x= 6 y= 9. Vậy thời gian vòi 1 và 2 chảy riêng để đầy bể lần lượt là 6 giờ và 9 giờ.