cho c bằng= 3n+1/n-2
tìm n thuộc z để c là số nguyên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=\frac{9n+1}{3n-2}=\frac{3\left(3n-2\right)+7}{3n-2}=3+\frac{7}{3n-2}\)
\(\Rightarrow3n-2\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)
3n - 2 | 1 | -1 | 7 | -7 |
n | 1 | loại | 3 | loại |
\(B=\frac{9n+1}{3n-2}=\frac{3.\left(3-2\right)+7}{3n-2}=3+\frac{7}{3n-2}\)
=>3n-2 \(\in\)Ư(7)={\(\pm\)1;\(\pm\)7}
ta có bảng giá trị sau:
3n-2 | 1 | 7 | -1 | -7 | |
n | 1 | 3 | loại | loại |
Lời giải:
Gọi $d=ƯCLN(3n-13, n-1)$
$\Rightarrow 3n-13\vdots d; n-1\vdots d$
$\Rightarrow 3(n-1)-(3n-13)\vdots d$
$\Rightarrow 10\vdots d\Rightarrow d=1,2,5,10$
Để phân số trên tối giản thì $d\neq 2,5,10$
Điều này xảy ra khi $n-1\not\vdots 2$ và $n-1\not\vdots 5$
$\Leftrightarrow n\neq 2k+1$ với mọi $k$ là số nguyên bất kỳ và $n\neq 5m+1$ với $m$ là số nguyên bất kỳ.
a/ Để \(\frac{n+3}{n-2}\) âm => \(\frac{n+3}{n-2}<0\) mà n - 2 < n + 3 => n - 2 < 0 => n < 2
Vậy n < 2 thì \(\frac{n+3}{n-2}\) là số âm.
b/ Để \(\frac{n+7}{3n-1}\) nguyên => n + 7 chia hết cho 3n - 1
=> 3 (n + 7) chia hết cho 3n - 1
=> 3n + 21 chia hết cho 3n - 1
=> 22 chia hết cho 3n - 1
=> 3n - 1 ∈ Ư(22)
=> 3n - 1 ∈ { ±1 ; ±2 ; ±11 ; ±22 }
- Nếu 3n - 1 = 1 => 3n = 2 => n = 2/3 (ko thỏa mãn n ∈ Z)
- Nếu 3n - 1 = -1 => 3n = 0 => n = 0 (thỏa mãn)
- Nếu 3n - 1 = 2 => 3n = 3 => n = 1 (thỏa mãn)
- Nếu 3n - 1 = -2 => 3n = -1 => n = -1/3 (ko thỏa mãn n ∈ Z)
- Nếu 3n - 1 = 11 => 3n = 12 => n = 4 (thỏa mãn)
- Nếu 3n - 1 = -11 => 3n = -10 => n = -10/3 (ko thỏa mãn n ∈ Z)
- Nếu 3n - 1 = 22 => 3n = 23 => n = 23/3 (ko thỏa mãnn ∈ Z)
- Nếu 3n - 1 = -22 => 3n = -21 => n = -7 (thỏa mãn)
Vậy n ∈ { 0 ; 1 ; 4 ; -7 } thì \(\frac{n+7}{3n-1}\) là số nguyên.
c/ Để \(\frac{3n+2}{4n-5}\in N\) => 3n + 2 chia hết cho 4n - 5
=> 4 (3n + 2) chia hết cho 4n - 5
=> 12n + 8 chia hết cho 4n - 5
=> 23 chia hết cho 4n - 5
=> 4n - 5 ∈ Ư(23)
=> 4n - 5 ∈ { 1 ; 23 }
- Nếu 4n - 5 = 1 => 4n = 6 => n = 3/2 (ko thoả mãn n ∈ Z)
- Nếu 4n - 5 = 23 => 4n = 28 => n = 7 (thỏa mãn)
Vậy n = 7 thì \(\frac{3n+2}{4n-5}\in N\)
Để A có giá trị là số nguyên thì tử phải chia hết cho mẫu. Ta có:
3n+1 chia hết cho n+1
3(n+1)-2 chia hết cho n+1
Do đó n+1 phải là ước của 2.
Ư(2)={+-1;+-2}
=> n=0;-2;1;-3
**** bạn hiền
Gọi ƯCLN(3n+1;n-2) là \(a\left(a\in Z\right)\)
ta có :\(\left(3n+1\right)⋮a\\ \left(n-2\right)⋮a\\ \Rightarrow\left[3\left(n-2\right)-\left(3n+1\right)\right]⋮a\\ \rightarrow\left[\left(3n+6\right)-\left(3n+1\right)\right]⋮a\\ \rightarrow\left[3n-6-3n-1\right]⋮a\\ \rightarrow\left(-6-1\right)⋮a\\ \rightarrow-7⋮a\\ \Rightarrow a=\text{Ư}\left(-7\right)=\left\{\pm1;\pm7\right\}\)
ta có bảng sau :
Vậy:\(n\in\left\{3;1;9;-5\right\}\)