K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 4 2016

Cho $\Delta ABC$ΔABC vuông tại A có AB=6cm, AC=8cm.a) tính BCb) Kẻ tia phân giác góc B cắt AC ở D, hình chiếu của D trên BC là H. CMR AB=BHc) E là hình chiếu của C trên BD. CM $\Delta BAC=\Delta CEB$ΔBAC=ΔCEBd) so sánh AD và DC           ( giải nhanh lên giúp mình với mai mình phải nộp rồi! Làm xong mình sẽ k cho 3 cái)

\(hnhamihhlai\)

a) tam giác ABC vuông tại A

=> AB2 + AC2 = BC2

=> 62 + 82 = BC2

=> BC2 = 100

=> BC = \(\sqrt{100}=10cm\)

vậy BC = 10 cm

Nobita Kun ko làm thì đi chỗ khác

22 tháng 4 2016

a) tam giác ABC vuông tại A

\(\Rightarrow\) AB^2 + AC^2 = BC ^2

<=> 6^2 + 8^2 = BC^2

<=> BC^2 = 100

<=> BC = CĂN 100

<=> BC = 10 ( cm)

B ) Xét tam giác vuông BDA và tam giác vuông BDH :

ABD = HBD

BD là cạnh chung

Vậy hai tam giác bằng nhau

<=> AB = BH

22 tháng 4 2016

a) tam giác ABC vuông tại A

 AB^2 + AC^2 = BC ^2

<=> 6^2 + 8^2 = BC^2

<=> BC^2 = 100

<=> BC = CĂN 100

<=> BC = 10 ( cm)

B ) Xét tam giác vuông BDA và tam giác vuông BDH :

ABD = HBD

BD là cạnh chung

Vậy hai tam giác bằng nhau

<=> AB = BH

21 tháng 4 2016

TỰ VẼ HÌNH NHA BN :

a)Áp dụng định lí PY-ta-go vào tam giác uông ABC có:

BC^2=AB^2+AC^2

BC^2=6^2+8^2

BC^2=36+64

BC^2=100

BC^2=\(\sqrt{100}\)=>BC=10cm

 

21 tháng 4 2016

Các bạn làm câu b,c,d giúp mình đi câu a mình tụ làm đc rùi

a: Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=6^2+8^2=100\)

hay BC=10cm

Áp dụng hệ thức lượng trong tam giác vuông ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(\left\{{}\begin{matrix}AB\cdot AC=AH\cdot BC\\AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AH=4.8\left(cm\right)\\BH=3.6\left(cm\right)\\CH=6.4\left(cm\right)\end{matrix}\right.\)

b: 

Áp dụng hệ thức lượng trong tam giác vuông ΔAHC vuông tại H có HE là đường cao ứng với cạnh huyền AC, ta được:

\(AE\cdot AC=AH^2\left(1\right)\)

Áp dụng hệ thức lượng trong tam giác vuông ΔABH vuông tại A có HD là đường cao ứng với cạnh huyền BA, ta được:

\(AD\cdot AB=AH^2\left(2\right)\)

Từ \(\left(1\right),\left(2\right)\) suy ra \(AE\cdot AC=AD\cdot AB\)

hay \(\dfrac{AE}{AB}=\dfrac{AD}{AC}\)

Xét ΔAED vuông tại A và ΔABC vuông tại A có 

\(\dfrac{AE}{AB}=\dfrac{AD}{AC}\)

Do đó: ΔAED\(\sim\)ΔABC

Câu 1: 

a: Xét ΔAHB vuông tạiH có HD là đường cao

nên \(AD\cdot AB=AH^2\left(1\right)\)

Xét ΔAHC vuông tại H có HE là đường cao

nên \(AE\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AD\cdot AB=AE\cdot AC\)

b: \(BC=\sqrt{4^2+6^2}=2\sqrt{13}\left(cm\right)\)

\(AH=\dfrac{4\cdot6}{2\sqrt{13}}=\dfrac{12}{\sqrt{13}}\left(cm\right)\)

\(AE=\dfrac{AH^2}{AC}=\dfrac{144}{13}:6=\dfrac{24}{13}\left(cm\right)\)

 

12 tháng 5 2016

a) xét tam giác ( k biết ghi kí hiệu trên này :v) ABC và tam giác HBA có 
 góc B chung ( kí hiệu góc nhé :D) 
góc A = góc BHA = 90 độ ( gt) kí hiệu nhé 
Nên tam giác ABC ~ tam giác HBA (g .g) mình ms làm dc câu A thôi :v

 

13 tháng 5 2016

TỰ VẼ HÌNH NHA  

a) xét tám giác ABC và tam giác HBA 

góc A= góc H (=90 độ)

góc A :chung

=> tam giác ABC ~ tam giác HBA (g-g)

 

Bài 5 : Cho \(\Delta ABC\) có AB = AC , lấy M là trung điểm của BC . Trên tia đối của tia BC lấy điểm D , trên tia đối của tia CB lấy điểm E sao cho BD = CE . Chứng minh :b )\(\Delta ABD=\Delta ACE\)     a ) AM vuông góc với BC c )\(\Delta ACD=\Delta ABE\)      d ) AM là tia phân giác của góc DAEBài 6 : Cho tam giác ABC ( AC > AB ) . Tia phân giác của góc BAC cắt BC tại D. Trên cạnh AC lấy E sao cho AE = AB .a ) Chứng minh BD = DEb )...
Đọc tiếp

Bài 5 : Cho \(\Delta ABC\) có AB = AC , lấy M là trung điểm của BC . Trên tia đối của tia BC lấy điểm D , trên tia đối của tia CB lấy điểm E sao cho BD = CE . Chứng minh :

b )\(\Delta ABD=\Delta ACE\)     a ) AM vuông góc với BC

 c )\(\Delta ACD=\Delta ABE\)      d ) AM là tia phân giác của góc DAE

Bài 6 : Cho tam giác ABC ( AC > AB ) . Tia phân giác của góc BAC cắt BC tại D. Trên cạnh AC lấy E sao cho AE = AB .
a ) Chứng minh BD = DE

b ) Kéo dài AB và DE cắt nhau tại K. Chứng minh góc AKD bằng góc ACD .

c ) Chứng minh \(\Delta KBE=\Delta CEB\)

d ) Tìm điều kiện của tam giác ABC để DE vuông góc với AC .

Bài 7 Cho tam giác ABC , P là trung điểm của AB . Đường thẳng qua P và song song với BC cắt AC ở đường thẳng qua Q và song song với AB cắt BC ở F. Chứng minh rằng :

a ) AP = QF

b ) \(\Delta APQ=\Delta QFC\)

c ) Q là trung điểm của AC

d ) Lấy điểm I thuộc tia đối của tia QP sao cho QI = QP . Chứng minh CI // AB

Bài 8 : Cho đoạn thẳng AB . Trên hai nửa mặt phẳng đối nhau bờ AB , kẻ tia Ax và By cùng vuông góc với AB . Trên tia Ax , By lần lượt lấy hai điểm C , D sao cho AC = BD .
a ) Chứng minh AD = BC

. b ) Chứng minh AD // BC .

c ) Gọi 0 là trung điểm của AB . Trên BC lấy điểm E , trên AD lấy điểm F sao cho CE = DF . Chứng minh ( là trung điểm của EF .

 

Mình đang cần gấp ạ

 

0
8 tháng 7 2021

Xin lỗi mình không thể chụp ảnh.

Phần 5 thì chỉ có AE song song với CF thôi nhé. Còn BD vuông góc với CF.

1. Xét tam giác ABD và tam giác EBD có:

BAD=BED=90o (gt)

ABD= EBD( BD là tia phân giác)

BD chung ( gt)

=> 2 tam giác = nhau

=> AB=BE ( 2 cạnh tương ứng)

Xét tam giác EBF và tam giác ABC có:

B1=B2(cmt)

A=E  (cmt)

BE=BA( cmt)

=> 2 tam giác = nhau

2. Trong tam giác cân, tia phân giác xuất phát từ đỉnh đồng thời là đường trung trực. => BH vuông góc với AE và H là trung điểm của AE( tính chất đường trung trực) (đpcm)

3.Ta có: AD=ED( tam giác ABD= EBD) (1)

Mặt khác, DC> ED( cạnh huyền lớn hơn cạnh góc vuông) (2)

Từ (1)và (2) => DC>AD ( đcpm)

Ý 2:

Có: BA=BE(cmt)

BF=BC( tam giác BFE= BCA)

và BC= BE+EC ; BF= AB+AF

=> AF= EC

=> Tam giác BFC cân

5. Gọi giao của BH và FC là G.

Có tam giác BFC cân( cmt)

=> BG vuông góc với FC ( trong tam giác cân, tia phân giác đồng thời là đường trung tuyến)

Mặt khác,BH vuông góc với AE

=> AE song song FC ( từ vuông gó đến song song)

Nhớ tim và cảm ơn nhé. cảm ơn bạn. Chúc bạn học tốt.

 

8 tháng 7 2021

mình đánh máy hơi lâuleuleu

c) Xét ΔABD vuông tại A và ΔHBD vuông tại H có 

BD chung

\(\widehat{ABD}=\widehat{HBD}\)(BD là tia phân giác của \(\widehat{ABH}\))

Do đó: ΔABD=ΔHBD(cạnh huyền-góc nhọn)

a) Ta có: \(BC^2=10^2=100\)

\(AB^2+AC^2=6^2+8^2=100\)

Do đó: \(BC^2=AB^2+AC^2\)(=100)

Xét ΔABC có \(BC^2=AB^2+AC^2\)(cmt)

nên ΔABC vuông tại A(Định lí Pytago đảo)