cho dãy số 1/1.3+1/3.5+1/5.7+...+1/101.103 số số hạng của dãy trên là
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Số số hạng của dãy trên là:
(103 - 1) : 2 + 1 = 52(số hạng)
Đúng đấy, ko hiểu thì hỏi nha.
Ta có:
1.3;5.7;9.11;13.15;17.19 có 5 số hạng
suy ra (5.9)+2=47(số hạng)
Đáp số:47 số hạng
xét mẫu số của từng số hạng , ta thấy :
1 . 3 ; 5 . 7 ; 9 . 11 ; ... ; 101 . 103
Ta thấy 1 ; 5 ; 9 ; ... ; 101 là dãy số hạng cách đều
Vậy : số số hạng của dãy phân số trên là :
( 101 - 1 ) : 4 + 1 = 26 ( số )
Đáp số : 26 số
\(u_{n+1}=\dfrac{1}{1\cdot3}+\dfrac{1}{3\cdot5}+...+\dfrac{1}{\left(2n-1\right)\cdot\left(2n+1\right)}\)
\(=\dfrac{1}{2}\left(\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+...+\dfrac{2}{\left(2n-1\right)\left(2n+1\right)}\right)\)
\(=\dfrac{1}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{2n-1}-\dfrac{1}{2n+1}\right)\)
\(=\dfrac{1}{2}\left(1-\dfrac{1}{2n+1}\right)\)
\(=\dfrac{1}{2}\cdot\dfrac{2n+1-1}{2n+1}=\dfrac{n}{2n+1}\)
=>\(u_{50}=u_{49+1}=\dfrac{49}{2\cdot49+1}=\dfrac{49}{99}\)
\(\dfrac{1}{3.5}+\dfrac{1}{5.7}+\dfrac{1}{7.9}+...+\dfrac{1}{203.205}\)
\(=\dfrac{1}{2}.\left(\dfrac{2}{3.5}+\dfrac{2}{5.7}+\dfrac{2}{7.9}+...+\dfrac{2}{203.205}\right)\)
\(=\dfrac{1}{2}.\left(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+...+\dfrac{1}{203}-\dfrac{1}{205}\right)\)
\(=\dfrac{1}{2}.\left(\dfrac{1}{3}-\dfrac{1}{205}\right)\)
\(=\dfrac{1}{2}.\dfrac{202}{615}\)
\(=\dfrac{101}{615}\)
Chúc bạn học tốt!
dãy phân số mà bảo là dãy số à ?