cho tam giac ABC can tai A duong cao AH biet AB=5cm,BC=6cm.
a)tinh do dai cac doan thang BH,AH
b)Goi Gla trong tam cua tam giac ABC . Chung minh rang ba diem A,G,H thang hang.
c)Chung minh hai goc ABG va ACG bang nhau
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Áp dụng định lí Pi - ta - go, ta có:
102 - 52 = 75 => AC = \(\sqrt{75}\)
Còn mấy phần kia mình hơi vội nên chưa lm đc thông cảm nhé
a)
xét 2 tam giác vuông ABH và ACH có:
AB=AC
B=C
suy ra tam giác ABH=ACH(CH-GN)
suy ra BH=CH=1/2BC=6:2=3(cm)
AH^2=AB^2-BH^2=5^2-3^2=25-9=16
AH= 4(cm)
b)
theo câu a, ta có tam giác ABH=ACH(CH-GN)
suy ra BH=CH suy ra AH là 1 đường trung tuyến của tam giác ABC
G là trọng tâm tam giác nên G sẽ là giao của 3 đường trung tuyến
suy ra A,G,H thẳng hàng
vô tcn của PTD/KM ?, https://olm.vn/thanhvien/kimmai123az, toàn câu tl copy, con giẻ rách này ko nên sông nx
Câu hỏi của Không Phaỉ Hoỉ - Toán lớp 8 - Học toán với OnlineMath
Câu hỏi của KHANH QUYNH MAI PHAM - Toán lớp 9 - Học toán với OnlineMath
Câu hỏi của KHANH QUYNH MAI PHAM - Toán lớp 9 - Học toán với OnlineMath
Câu hỏi của Ngọc Anh Dũng - Toán lớp 9 - Học toán với OnlineMath
Câu hỏi của KHANH QUYNH MAI PHAM - Toán lớp 9 - Học toán với OnlineMath
Câu hỏi của Nguyễn Thu Hiền - Toán lớp 9 - Học toán với OnlineMath
Còn rất rất nhìu nx, ko có t/g
I. Nội qui tham gia "Giúp tôi giải toán"
1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;
2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.
3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.
Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.
a) Vì tam giác ABC cân tại A nên AB=AC
Vì AH là đường cao của tam giác ABC nên góc AHB= góc AHC=90 độ
Tam giác AHC= tam giác AHB(ch-cgv) nên CH=BH
Mà BH+CH=BC nên 2BH=6(cm) nên BH=3cm
Tam giác AHB vuông tại H nên áp dụng định lí pytago ta cóAB^2=AH^2+BH^2
Mà AB=5cm, BH=3cm nên AH^2=16 mà AH>0 nên AH=4cm
b) Vì BH=CH(cm câu a) nên H là trung điểm của BC nên AH là đường trung tuyến của tam giác ABC
Mà G là trọng tâm của tam giác ABC nên G thuộc đoạn thẳng AH
Nên A, G, H thẳng hàng(đpcm)
Đây là ý kiến của mình, mong bạn ủng hộ
a, Xét \(\Delta AHM\) và \(\Delta AKM\) có:
\(\widehat{AHM}=\widehat{AKM}=90^o\)
AM cạnh chung
\(\widehat{HAM}=\widehat{KAM}\) (vì AM là tia phân giác của \(\widehat{HAK}\))
\(\Rightarrow\Delta AHM=\Delta AKM\) (cạnh huyền - góc nhọn)
`=> AH = AK` (2 cạnh tương ứng) (1)
Ta có: \(\widehat{AMK}+\widehat{KAM}=90^o\) (vì \(\Delta AKM\) vuông tại K)
\(\widehat{KAM}+\widehat{BAM}=90^o\)
\(\Rightarrow\widehat{AMK}=\widehat{BAM}\)
Mà \(\widehat{AMK}=\widehat{AMB}\) (vì \(\Delta AHM=\Delta AKM\))
\(\Rightarrow\widehat{BAM}=\widehat{AMB}\)
\(\Rightarrow\Delta ABM\) cân tại B \(\Rightarrow AB=BM\) (2)
Từ (1), (2) ta có đpcm
b, Xét \(\Delta HIM\) và \(\Delta CKM\) có:
\(\widehat{HMI}=\widehat{CMK}\) (2 góc đối đỉnh)
HM = KM (vì \(\Delta AHM=\Delta AKM\))
\(\widehat{IHM}=\widehat{CKM}\left(=90^o\right)\)
\(\Rightarrow\Delta HIM=\Delta KCM\left(g.c.g\right)\)
`=> HI = CK` (2 cạnh tương ứng)
Mà AH = AK (cmt)
`=> AH + HI = AK + CK`
`=> AI = AC`
\(\Rightarrow\Delta ACI\) cân tại A
AM là đường phân giác của \(\Delta ACI\) cân tại A
`=> AM` cũng là đường cao
\(\Rightarrow AM\perp CI\) (3)
Vì AH = AK nên \(\Delta AHK\) cân tại A
\(\Rightarrow\widehat{AHK}=\dfrac{180^o-\widehat{CAI}}{2}\)
\(\Delta ACI\) cân tại A \(\Rightarrow\widehat{AIC}=\dfrac{180^o-\widehat{CAI}}{2}\)
\(\Rightarrow\widehat{AHK}=\widehat{AIC}\)
Mà 2 góc này ở vị trí đồng vị
`=>` HK // CI (4)
Từ (3), (4) ta có đpcm
a. Vì tam giác ABC cân tại A nên đường cao cũng là đường trung tuyến
Do đó H là trung điểm của BC hay BH=HC=1/2BC=3cm
Áp dụng định lý Pytago trong tam giác ABH vuông tại H ta có AH2 + BH2 = AB2
suy ra AH2 + 32 = 52
=> AH = 4(cm)
b. Vì tam giác ABC cân tại A, AH là đường cao nên AH cũng là đường trung tuyến của tam giác ABC
Do đó A, G, H thẳng hàng
c. Vì tam giác ABC cân tại A, AH là đường cao nên AH cũng là phân giác góc A
suy ra góc BAG = góc CAG
Tam giác ABG và tam giác ACG có:
AB = AC
góc BAG = góc CAG
AG chung
Do đó tam giác ABG = tam giác ACG