Chứng minh bất đẳng thức sau
A=(a+b)(1/a+1/b)>=4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(a^2+b^2)/2>=ab
<=>(a^2+b^2)>=2ab
<=> a^2+2ab+b^2>=2ab
<=>a^2+b^2>=0(luôn đúng)
=> điều phải chứng minh.
Xét hiệu: \(a^2+b^2-2ab=\left(a-b\right)^2\ge0\)
=> \(a^2+b^2\ge2ab\)
Dấu "=" xra <=> a = b
Áp dụng ta có:
a) \(\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)\ge2a.2b.2c=8abc\)
dấu "=" xra <=> a = b = c = 1
b) \(\left(a^2+4\right)\left(b^2+4\right)\left(c^2+4\right)\left(d^2+4\right)\ge4a.4b.4c.4d=256abcd\)
Dấu "=" xra <=> a = b= c = d = 2
a ) Áp dụng BĐT phụ \(a^2+b^2\ge2ab\) cho các cặp số thực , ta có :
\(\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)\ge2a.2b.2c=8abc\)
Dấu " = " xảy ra \(\Leftrightarrow a=b=c=1\)
b ) Làm tương tự như a )
Ta có: \(\left(a-b\right)^2\ge0\Leftrightarrow a^2-2ab+b^2\ge0\Leftrightarrow a^2+b^2\ge2ab\)
a) Lại có : \(\left(a-1\right)^2\ge0\Leftrightarrow...\Leftrightarrow a^2+1\ge2a\)
cmtt \(\Rightarrow\left\{{}\begin{matrix}b^2+1\ge2b\\c^2+1\ge2c\end{matrix}\right.\)
Nhân vế theo vế ta đc: \(\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)\ge2a.2b.2c=8abc\left(dpcm\right)\)
b) Tiếp tục có \(\left(a-2\right)^2\ge0\Leftrightarrow...\Leftrightarrow a^2+4\ge4a\)
CMTT: \(\Rightarrow\left\{{}\begin{matrix}b^2+4\ge4b\\c^2+4\ge4c\end{matrix}\right.\)
Nhân vế theo vế ta đc: \(\left(a^2+4\right)\left(b^2+4\right)\left(c^2+4\right)\ge4a.4b.4c=256abc\left(dpcm\right)\)
a)\(A=\left(a+b\right)\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\)
\(A=1+\dfrac{a}{b}+\dfrac{b}{a}+1\)
Ta chứng minh bđt:\(\dfrac{a}{b}+\dfrac{b}{a}\ge2\)(1)
\(\Leftrightarrow\dfrac{a^2+b^2}{ab}\ge2\)
\(\Leftrightarrow a^2+b^2\ge2ab\)
\(\Leftrightarrow\left(a-b\right)^2\ge0\)(luôn đúng)
Áp dụng\(\Rightarrow A\ge1+2+1=4\left(\text{đ}pcm\right)\)
b)\(B=\dfrac{a+b}{c}+\dfrac{b+c}{a}+\dfrac{c+a}{b}\)
\(B=\dfrac{a}{c}+\dfrac{b}{c}+\dfrac{b}{a}+\dfrac{c}{a}+\dfrac{c}{b}+\dfrac{a}{b}\)
\(B=\left(\dfrac{a}{c}+\dfrac{c}{a}\right)+\left(\dfrac{b}{c}+\dfrac{c}{b}\right)+\left(\dfrac{b}{a}+\dfrac{a}{b}\right)\)
Áp dụng bđt (1)\(\Rightarrow B\ge2+2+2=6\left(\text{đ}pcm\right)\)
b)Theo BĐT Côsi:
\(\frac{ab}{c}+\frac{bc}{a}\ge2\sqrt{\left(\frac{ab}{c}.\frac{bc}{a}\right)}=2b\)
Tương tự ta có:
\(\frac{bc}{a}+\frac{ca}{b}\ge2c\)
\(\frac{ca}{b}+\frac{ab}{c}\ge2a\)
Cộng vế với vế của 3 bđt trên rồi chia 2 vế bđt thu được cho 2 ta có ngay đpcm.
Đẳng thức xảy ra khi a = b = c
a) Nếu k có điều kiện a, b > 0 thì bất đẳng thức k thể xảy ra
b) Ta có : \(\frac{ab}{c}+\frac{bc}{a}\ge2b\)
\(\frac{ab}{c}+\frac{ac}{b}\ge2a\)
\(\frac{bc}{a}+\frac{ac}{b}\ge2c\)
Cộng 2 vế của bất đẳng thức ta được :
\(2.\left(\frac{bc}{a}+\frac{ca}{b}+\frac{ab}{c}\right)\ge2.\left(a+b+c\right)\)
=> bất đẳng thức cần chứng minh
a) bn sai đề nhé,đề đúng là : \(\frac{1}{a}+\frac{1}{b}\) > \(\frac{4}{a+b}\) nhé,vì mk làm rồi
Giả sử \(\frac{1}{a}+\frac{1}{b}\) > \(\frac{4}{a+b}\)
=> \(\frac{a+b}{ab}\) > \(\frac{4}{a+b}\)
=>\(\left(a+b\right)\left(a+b\right)\) > 4ab
=>\(\left(a+b\right)^2-4ab\) > 0
=>\(a^2+2ab+b^2-4ab\) > 0
=>\(a^2-2ab+b^2\) > 0
=>\(\left(a-b\right)^2\) > 0
BĐT cuối luôn đúng với mọi a;b
=>điều giả sử là đúng,ta có đpcm
(*)đề sai nên Kiệt ko ra là phải
Quá dễ!
a, \(\left(\frac{a+b}{2}\right)^2-ab=\left(\frac{a^2+2ab+b^2}{4}\right)-ab=a^2+2ab+b^2-4ab=a^2-2ab+b^2=\left(a-b\right)^2\)
Vì (a-b)2 \(\ge\) 0 => \(\left(\frac{a+b}{2}\right)^2-ab\ge0\Rightarrow\left(\frac{a+b}{2}\right)^2\ge ab\)
b, Câu này chả có gì khó cả, tiểu học cũng học rồi, chung tử bằng 1, mẫu lớn hơn thì phân số bé hơn và ngược lại
Để gõ cái đống phân số như ở câu a kia là mình mất khá nhiều thời gian đấy, ti ck ủng hộ nhé
BĐT \(\Leftrightarrow\left(a+b\right).\frac{a+b}{ab}\ge4\Leftrightarrow\left(a+b\right)^2\ge4ab\Leftrightarrow a^2+2ab+b^2\ge4ab\Leftrightarrow\left(a-b\right)^2\ge0\)
Do BĐT cuối luôn đúng nên ta có đpcm. Dấu "=" xảy ra khi a=b