K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

(d1): 5x+4y=5

=>4y=-5x+5

=>y=-5/4x+5/4

(d2): 5x+2y=m

=>2y=-5x+m

=>y=-5/2x+m/2

Để hai đường cắt nhau tại trục Ox thì -5/4<>-5/2 và -5/4:(-5/4)=(-m/2):(-5/2)

=>\(-\dfrac{m}{2}\cdot\dfrac{2}{-5}=1\)

=>m=5

13 tháng 2 2019

Giả sử hai đường thẳng ( d 1 ): 5x – 2y = 3; ( d 2 ): x + y = m cắt nhau tại điểm A(x, y).

Vì giao điểm A nằm trên trục Oy nên x = 0. Suy ra: A(0; y).

Khi đó điểm A(0; y) là nghiệm của hệ phương trình: Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Vậy khi m = - 3/2 thì ( d 1 ): 5x – 2y = 3; (d2): x + y = m cắt nhau tại một điểm trên trục Oy.

Phương trình đường thẳng ( d 2 ): x + y = - 3/2

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Đồ thị:

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

9 tháng 1 2019

Giả sử hai đường thẳng ( d 1 ): mx + 3y = 10; ( d 2 ): x – 2y = 4 cắt nhau tại điểm B(x, y).

Vì điểm B nằm trên trục Ox nên y = 0 ⇒ B( x, 0).

Khi đó điểm B(x; 0) là nghiệm của hệ phương trình: Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Vậy khi m = 5/2 thì ( d 1 ): mx + 3y = 10; ( d 2 ): x – 2y = 4 cắt nhau tại một điểm trên trục Ox.

Phương trình đường thẳng (d1):Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9 5x + 6y = 20

*Vẽ ( d 1 ): Cho x = 0 thì y = 10/3 ⇒ (0; 10/3 )

Cho y = 0 thì x = 4 ⇒ (4; 0)

*Vẽ ( d 2 ): x - 2y = 4. Cho x = 0 thì y = -2 ⇒ (0; -2)

Cho y = 0 thì x = 4 ⇒ (4; 0)

Đồ thị:

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

20 tháng 10 2021

a: Để (d1)//(d2) thì m+2=3m-2

\(\Leftrightarrow-2m=-4\)

hay m=2

AH
Akai Haruma
Giáo viên
11 tháng 1 2022

Lời giải:

Để hai đường thẳng song song nhau thì:

\(\left\{\begin{matrix} k+3=4\\ m+1\neq 3-m\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} k=1\\ m\neq 1\end{matrix}\right.\)

Để hai đt cắt nhau thì: \(\left\{\begin{matrix} k+3\neq 4\\ m\in\mathbb{R}\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} k\neq 1\\ m\in\mathbb{R}\end{matrix}\right.\)

Để hai đt trùng nhau thì: \(\left\{\begin{matrix} k+3=4\\ m+1=3-m\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} k=1\\ m=1\end{matrix}\right.\)

Để hai đt cắt nhau tại 1 điểm trên trục tung thì:

PT hoành độ giao điểm $(k+3)x+m+1=4x+3-m$ nhận $x=0$ là nghiệm 

$\Leftrightarrow x(k-1)+(2m-2)=0$ nhận $x=0$ là nghiệm 

$\Leftrightarrow 2m-2=0$

$\Leftrightarrow m=1$

Vậy $m=1$ và $k\in\mathbb{R}$ bất kỳ.

Để 2 đt vuông góc thì $(k+3).4=-1$ và $m$ bất kỳ 

$\Leftrightarrow k=\frac{-13}{4}$ và $m$ bất kỳ.

AH
Akai Haruma
Giáo viên
10 tháng 5 2021

Lời giải:

Giao điểm của 2 đường thẳng thuộc trục hoành nên có dạng $(a,0)$. Vì điểm này thuộc $(d_1):x+y=-1$ nên $a+0=-1\Rightarrow a=-1$

Vậy giao điểm của 2 ĐT trên là $(-1,0)$

Giao điểm này $\in (d_2)$ khi mà $m.(-1)+0=1$

$\Leftrightarrow m=-1$

 

Phương trình hoành độ giao điểm là:

x-2m+1=2x-3

=>-x=-3+2m-1

=>-x=2m-4

=>x=-2m+4

Để hai đường thẳng cắt nhau tại một điểm nằm ở phía trên trục hoành thì y>0

=>2x-3>0

=>x>3/2

18 tháng 2 2022

tim m ma bn