M=1/2-1/2^4+1/2^7-1/2^10+...+1/2^49-1/2^52
so sánh M với 9/4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(M=\frac{1}{2}-\frac{1}{2^4}+\frac{1}{2^7}-\frac{1}{2^{10}}+....+\frac{1}{2^{43}}-\frac{1}{2^{46}}+\frac{1}{2^{49}}-\frac{1}{2^{52}}\)
Nên \(2^3.M=4-\frac{1}{2}+\frac{1}{2^4}-\frac{1}{2^7}+.....+\frac{1}{2^{46}}-\frac{1}{2^{52}}\)
Suy ra \(2^3.M-M=4-\frac{1}{2^{52}}\)hay\(7.M=4-\frac{1}{2^{52}}\).
Khi đó \(M=\frac{4}{7}-\frac{1}{2^{52}.7}< 1\)
Vì \(\frac{9}{4}>1;M< 1\)nên \(\frac{9}{4}>M\)
Vậy \(\frac{9}{4}>M\)
M = \(\frac{1}{2}\)+ \(\frac{2}{3}\)+ \(\frac{3}{4}\)+\(\frac{4}{5}\)+ \(\frac{5}{6}\)+ \(\frac{6}{7}\)+ \(\frac{7}{8}\)+ \(\frac{8}{9}\)+ \(\frac{9}{10}\)= \(\frac{17819}{2520}\)
Vậy: M > 1
Ta có:
1 = \(\frac{1}{10}+\frac{1}{10}+\frac{1}{10}+............+\frac{1}{10}\)(10 phân số \(\frac{1}{10}\))
Mà \(\frac{1}{2}>\frac{1}{10};\frac{2}{3}>\frac{1}{10};............;\frac{9}{10}>10\)
\(\Rightarrow M>1\)
Vậy M > 1