K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 4 2016

Gọi d là ƯC của 12n+1 và 30n+1 (d thuộc Z;d khác 0)

Ta có : 12n+1 chia hết cho d

           30n+1 chia hết cho d

Có 12n+1 chia hết cho d

-->5.(12n+1) chia hết cho d

-->60n+5 chia hết cho d

Có 30n+1 chia hết cho d

-->2.(30n+1) chia hết cho d

-->60n+2 chia hết cho d

Mà 60n+5 chia hết cho d

-->(60n+5)-(60n+2) chia hết cho d

-->3 chia hết cho d

-->d thuộc ước của 3

-->d thuộc tập hợp -1;-3;1;3

Vì 60n là số chẵn

     2 là số chẵn

-->60n+2 là số chẵn

--> d khác -3 và 3

--> d thuộc tập hợp -1;1

-->12n+1/30n+1 là phân số tối giản

Vậy 12n+1/30n+1 là phân số tối giản

20 tháng 2 2016

Gọi d là ƯCLN ( 12n+1; 30n+2 )

=> 12n + 1 ⋮ d => 5.( 12n + 1 ) ⋮ d => 60n + 5 ⋮ d ( 1 )

=> 30n + 2 ⋮ d => 2.( 30n + 2 ) ⋮ d => 60n + 4 ⋮ d ( 2 )

Từ ( 1 ) và ( 2 ) => [ ( 60n + 5 ) - ( 60n + 4 ) ] ⋮ d

=> 1 ⋮ d => d = 1

Vì ƯCLN ( 12n + 1 ; 30n + 2 ) = 1 nên 12n+1/30n+2 là p/s tối giản 

20 tháng 2 2016

Gọi d là ước chung của 12n+1 và 30n+2 ta có:

5.(12n+1)-2.(30n+2)=60n+5-60n-4=1 chia hết cho d

Vậy d=1 nên 12n+1 và 30n+2 là hai số nguyên tố cùng nhau, do đó \(\frac{12n+1}{30n+2}\) là phân số tối giản

25 tháng 1 2019

Gọi (12n + 1; 30n + 2) = d

=> 12n + 1 chia hết cho d  

      30n + 2 chia hết cho d

Xét hiệu:  5(12n + 1) - 2(30n + 2)  chia hết cho d

           <=>  60n + 5 - 60n - 4   chia hết cho d

           <=>   1  chia hết cho d

=> d = 1

Vậy (12n + 1)/(30n + 2) là phân số tối giản

18 tháng 5 2020

Gọi ước chung lớn nhất của 12n + 1 và 30n + 2 là d, ta sẽ chứng minh d = 1.

Ta có : (12n + 1)⋮ d nên 2.(30n + 2)⋮ d hay (60n + 4)⋮ d.

=> [(60n + 5) - (60n + 4)⋮ d.

=> (60n + 5 - 60n - 4)⋮ d.

=> 1⋮ d => d = 1.

Hay 12n + 1 và 30n + 2 là hai số nguyên tố cùng nhau.

Vậy : phân số \(\frac{12n+1}{30n+2}\)là phân số tối giản.

25 tháng 2 2016

bạn tìm ước chung lớn nhất của từ và mẫu bằng cách làm mất chữ

25 tháng 2 2016

Gọi UCLN(12n+1;30n+2)=d

Ta có:12n+1 chia hết cho d           =>5(12n+1) chia hết cho d       =>60n+5 chia hết cho d

30n+2 chia hết cho d                    =>2(30n+2) chia hết cho d       =>60n+4 chia hết cho d

=>(60n+5)-(60n+4) chia hết cho d

=>1 chia hết cho d

=>d=1

Vậy \(\frac{12n+1}{30n+2}\) là phân số tối giản

7 tháng 2 2019

Ta có 12n+1=60n+5(1)

30n+2=60n+4(2)

Lấy (1)-(2)=60n+5-60n-4=1

ƯCLN(12n+1,30n+2)=1

Vậy Chứng tỏ rằng 12n+1/30n+2 là phân số tối giản

7 tháng 2 2019

Gọi \(\text{ƯCLN(12n + 1 ; 30n + 2) = d }\left(d\inℕ^∗\right)\)

\(\Rightarrow\hept{\begin{cases}12n+1⋮d\\30n+2⋮d\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}24n+2⋮d\\30n+2⋮d\end{cases}}\)

\(\Rightarrow6n⋮d\)

\(\Rightarrow12n⋮d\)

Mà \(12n+1⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=1\left(Do\text{ }d\inℕ^∗\right)\)

=> 12n + 1 và 30n + 2 nguyên tố cùng nhau

=> Phân số \(\frac{12n+1}{30n+2}\)tối giản

19 tháng 2 2017

Bạn ơi kết bạn đí rồi mình giải cho!

19 tháng 2 2017

ta có ucln của 12m+1, 30n+2 =d

=> (12n+1)chia hết cho d thì 5(12n+1) chia hết cho d hay 60n+5 chia hết cho d

30n+2 : d => 2(30n+2) chia hết cho d => 60n+4 chia hết cho d 

suy ra hiệu của 60n+5 và 60n+4 chia hết cho d hay 1 chia hết cho d => d là ước của 1

suy ra d bằng 1 

suy ra phân số trên là tối giản

24 tháng 6 2015

Gọi d là ƯCNN(12n+1; 30n+1) là d. Ta có:

12n+1 chia hết cho d=>60n+5 chia hết cho d

30n+1 chia hết cho d=>60n+2 chia hết cho d

=>3 chia hết cho d

=> d thuộc ước của 3

d không thể bằng 3 vì 12 chia hết cho 3=>12n chia hết cho 3=>12n+1 chia 3 dư 1

=>d=1

=>\(\frac{12n+1}{30n+1}\)là phân số tối giản

12 tháng 1 2023

 đặt (12n+1,30n+2)=d

=>12n+1 chia hết cho d nên 5*(12n+1) chia hết cho d

=>30n+2 chia hết cho d nên 2*(30n+2) chia hết cho d

ta có : 5*(12n+1)-2*(30n+2) chia hết cho d

       = 1 chia hết cho d

=> d=1

=>(12n+1,30n+2)=1

=>đpcm

12 tháng 1 2023

gọi d là ucln(12n+1;30n+2)

ta có : 12n+1 chia hết d

⇒60n + 5⋮d (1)

mà 30n+2⋮ d 

⇒60n + 4 ⋮ d (2)

từ (1) và (2) ta có:

⇒60n+5 -(60n+4)⋮d

⇒60n+5-60n-4⋮d

⇒1⋮d⇒d=1

vì ucln(12n+1;30n+2)=1

⇒12n+1/30n+2 là phân số tối giản

vậy 12n+1/30n+2 là phân số tối giản