cho hình thang ABCD đáy AD và BC hai đường chéo AC ,BD cắt nhau tại điểm M .tính diện tích hình MAB,MBC,MCD,MDA biết rằng AD=20 cm,BC=10cm và đường cao hình thang là 12 cm
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
.
Giải
Ta có :
\(\frac{S_{MDA}}{S_{MAB}}=\frac{DQ}{BP}\)( hai tam giác có chung đáy AM )
\(\frac{DQ}{BP}=\frac{S_{ACD}}{S_{ABC}}\)( hai tam giác có chung đáy AM )
\(\frac{S_{ACD}}{S_{ABC}}=\frac{AD}{BC}\)(hai tam giác có đường cao hạ từ A và C bằng nhau)
Ta lại có : Tỉ số \(\frac{S_{MDA}}{S_{MAB}}=\frac{AD}{BC}=\frac{20}{10}=2\)
Mặt khác :Tổng của \(S_{MDA}+S_{MAB}=S_{ABD}=\frac{20\times12}{2}=120\)( cm 2 )
\(S_{MAB}=\frac{120}{2+1}=40\)( cm 2 ) (1)
\(S_{MAD}=40\times2=80\)( cm 2 ) (2)
Ta có :
\(S_{ABC}=\frac{10\times12}{2}=60\)( cm 2 ) (3)
\(S_{ACD}=\frac{20\times12}{2}=120\)( cm 2 ) (4)
Từ (1)(2)(3)(4) => \(S_{MCD}=S_{ACD}-S_{MAD}=120-80=40\)( cm 2 )
\(S_{MBC}=S_{ABC}-S_{MAB}=60-40=20\)( cm 2 )
P/s tham khảo nha
Ta có:
S MDA/S MAB = DK/BH (2 tam giác có chung đáy AM)
Mà DK/BH = S ACD/S ABC (2 tam giác có chung đáy AC)
Lại có:S ACD/S ABC = AD/BC(2 tam giác có chiều cao hạ từ A và C bằng nhau)
==>S MDA/S MAB=AD/BC=20/10=2(cm)
Mà S MDA+S MAB=S ABD=20x12:2=120(cm2)
Vậy theo cách tìm dạng toán tìm hai số biết tổng(60cm2) và tỉ số(2),ta có:
S MAB=120:(2+1)=40 (cm2)
S MAD=40 x 2 =80 (cm2)
Lại thấy: S ABC=10x12:2=60 (cm2)
S ACD=20x12:2=120 (cm2)
Nên S MCD=S ACD-SMAD=120-80=40 (cm2)
S MBC=S ABC - S MAB=60-40=20 (cm2)
Đáp số:S MAB=40cm2;S MBC=20cm2;S MCD=40cm2;S MAD=80cm2.
Đây nếu sai mong đc chỉ giáo
ak cái này biết = 36
10000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000%
tk nha