K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 2 2017

cho tam giác ABC cân ở a . trên tia đối của tia BA lấy điểm D , trên tia đối của tia CA lấy điểm E sao cho BD=CE . từ các điểm d và e lần lượt kẻ các đoạn thẳng DH, EK vuông góc với bc . c,m

a) BH=CK

b) tam giác ahk là tam giác cân

18 tháng 3 2020

Tự vẽ hình nhá :)

AD = AB + BD

AE = AC + CE

Mà AB = AC ( \(\Delta ABC\)cân tại A )

BD = CE ( gt )

=>  AD = AE

\(\widehat{HAE}=\widehat{HAB}+\widehat{BAE}\)

\(\widehat{KAD}=\widehat{KAC}+\widehat{CAD}\)

Mà \(\widehat{HAB}=\widehat{KAC}\) \(\left(\Delta ABH=\Delta AKC\right)\)

\(\Rightarrow\widehat{HAE}=\widehat{KAD}\)

Xét \(\Delta AHE\)và \(\Delta AKD\) có :

AD = AE ( cmt )

\(\widehat{HAE}=\widehat{KAD}\left(cmt\right)\)

AH = AK ( \(\Delta AHB=\Delta AKC\))

\(\Rightarrow\Delta AHE=\Delta AKD\left(c-g-c\right)\)

HB=KC chứ bạn

Ta có  HBD=ABC ( đối đỉnh)

          ACB=KCE

13 tháng 2 2022

undefined

Hình vẽ đây em nhé. Sửa lại câu hỏi không có nói chứng minh gì nên a không giải được đâu nhé

a: Xét ΔDBH vuông tại H và ΔECK vuông tại K có

DB=CE

góc DBH=góc ECK

=>ΔDBH=ΔECK

=>HB=CK

b: Xet ΔABH và ΔACK có

AB=AC
góc ABH=góc ACK

BH=CK

=>ΔABH=ΔACK

=>góc AHB=góc AKC

c: Xét ΔADE có AB/BD=AC/CE
nên BC//DE

=>HK//ED

d: Xét ΔAHE và ΔAKD có

AH=AK

HE=KD

AE=AD

=>ΔAHE=ΔAKD

a: Xét ΔHBD vuông tại H và ΔKCE vuông tại K có

BD=CE

\(\widehat{HBD}=\widehat{KCE}\)

Do đó: ΔHBD=ΔKCE

Suy ra: HB=KC

b: Xét ΔAHB và ΔAKC có 

AB=AC

\(\widehat{ABH}=\widehat{ACK}\)

BH=CK

Do đó: ΔAHB=ΔAKC

Suy ra: \(\widehat{AHB}=\widehat{AKC}\)

c: Xét ΔADE có AB/AD=AC/AE

nên BD//ED

hay DE//HK

10 tháng 8 2021

Câu a phải là HD= EK mới đúng chứ nhỉ

b) Ta có: \(\widehat{ABC}=\widehat{DBH}\)(hai góc đối đỉnh)

\(\widehat{ACB}=\widehat{ECK}\)(hai góc đối đỉnh

mà \(\widehat{ABC}=\widehat{ACB}\)

nên \(\widehat{DBH}=\widehat{ECK}\)

Xét ΔDBH vuông tại H và ΔECK vuông tại K có 

DB=CE(gt)

\(\widehat{DBH}=\widehat{ECK}\)

Do đó: ΔDBH=ΔECK

Suy ra: BH=CK

8 tháng 8 2021

a)a) Xét ΔABCΔABC cân tại AA có:

- AB=ACAB=AC

- ˆABC=ˆACBABC^=ACB^

Lại có: ˆABC=ˆHBD,ˆACB=ˆKCEABC^=HBD^,ACB^=KCE^ (vì là các góc đối đỉnh)

⇒ˆHBD=ˆKCE.⇒HBD^=KCE^.

Xét ΔBHDΔBHD và ΔCKEΔCKE có:

- BD=CEBD=CE(gt)(gt)

- ˆHBD=ˆKCEHBD^=KCE^ (cmt)(cmt)

- ˆDHB=ˆEKC=900DHB^=EKC^=900(gt)(gt)

⇒ΔBHD=ΔCKE(ch−gn)⇒ΔBHD=ΔCKE(ch-gn)

⇒BH=CK(dpcm)⇒BH=CK(dpcm)

Vậy HB=CK.HB=CK.

b)b) Xét ΔABHΔABH và ΔACKΔACK có:

- AB=ACAB=AC (gt)(gt)

- BH=CKBH=CK (cmt)(cmt)

- ˆABH=ˆACKABH^=ACK^ (cùng bù với hai góc bằng nhau là: ˆABCABC^ và ˆACBACB^)

⇒ΔABH=ΔACK(c−g−c)⇒ΔABH=ΔACK(c-g-c)

⇒ˆAHB=ˆAKC,ˆBAH=ˆCAK.⇒AHB^=AKC^,BAH^=CAK^. (hai góc tương ứng)

Vậy ˆAHB=ˆAKC(dpcm).AHB^=AKC^(dpcm).

c)c) Xét ΔABCΔABC cân tại AA có:

⇒ˆABC=ˆACB=1800−ˆCAB2⇒ABC^=ACB^=1800-CAB^2

Ta có: AB=AC,BD=CEAB=AC,BD=CE

⇒AB+BD=AC+CE⇒AB+BD=AC+CE

⇔AD=AE.⇔AD=AE.

⇒ΔADE⇒ΔADE cân tại AA

⇒ˆADE=ˆAED=1800−ˆCAB2⇒ADE^=AED^=1800-CAB^2

Có: ˆADE=ˆABC,ˆACB=ˆAED(=1800−ˆCAB2)ADE^=ABC^,ACB^=AED^(=1800-CAB^2)

Mà các góc ở vị trí đồng vị.

⇒BC//ED⇒BC//ED. Mà H∈BC,K∈BCH∈BC,K∈BC

⇒HK//ED.⇒HK//ED.

Vậy ⇒HK//ED(dpcm).⇒HK//ED(dpcm).

d)d) Có ˆBAH=ˆCAKBAH^=CAK^(cmt)(cmt)

⇒ˆBAH+ˆBAE=ˆCAK+ˆBAE⇒BAH^+BAE^=CAK^+BAE^

⇔ˆHAE=ˆKAD.⇔HAE^=KAD^.

Xét ΔAHEΔAHE và ΔAKDΔAKD có:

- ˆHAE=ˆKADHAE^=KAD^ (cmt)(cmt)

- AH=AKAH=AK (do ΔABH=ΔACKΔABH=ΔACK(cmt)(cmt))

- AD=AEAD=AE (cmt)(cmt)

⇒ΔAHE=ΔAKD(c−g−c)⇒ΔAHE=ΔAKD(c-g-c)

Vậy ΔAHE=ΔAKD(dpcm).ΔAHE=ΔAKD(dpcm).

e)e) Có: ΔAHE=ΔAKDΔAHE=ΔAKD(cmt)(cmt)

⇒ˆAEH=ˆADK⇒AEH^=ADK^ (hai góc tương ứng)

Mà: ˆHDB=ˆKECHDB^=KEC^(cmt)(cmt)

⇒ˆAEH+ˆKEC=ˆADK+ˆHDB⇒AEH^+KEC^=ADK^+HDB^

⇔ˆHDI=ˆKEI⇔HDI^=KEI^

Mà: HD⊥BC,EK⊥BCHD⊥BC,EK⊥BC⇒HD//EK⇒HD//EK

⇒ˆHDI=ˆIKE⇒HDI^=IKE^ (hai góc so le trong)

⇒ˆDHI=ˆIEK⇒DHI^=IEK^ (hai góc so le trong)

⇒ˆHDI=ˆKEI=ˆIKE=ˆDHI⇒HDI^=KEI^=IKE^=DHI^

⇒ΔHID⇒ΔHID cân tại II, ΔKIEΔKIE cân tại II.

⇒HI=ID,IK=IE.⇒HI=ID,IK=IE.

Xét ΔHIDΔHID và ΔEIKΔEIK có:

-HD=EKHD=EK (cmt)(cmt)

-ˆHDI=ˆIKEHDI^=IKE^ (cmt)(cmt)

-ˆDHI=ˆIEKDHI^=IEK^(cmt)(cmt)

⇒ΔHID=ΔEIK(g−c−g)⇒ΔHID=ΔEIK(g-c-g)

⇒ID=IK, IH=IE.⇒ID=IK, IH=IE. (hai cạnh tương ứng)

Lại có: HI=ID,IK=IE.HI=ID,IK=IE.(cmt)(cmt)

⇒ID=IK=IH=IE⇒ID=IK=IH=IE

⇒ΔIED⇒ΔIED cân tại I⇔ID=IE.I⇔ID=IE.

⇒I⇒I thuộc đường trung trực của DEDE
Lại có: AD=AEAD=AE (ΔADEΔADE cân tại AA(cmt)(cmt))

⇒A⇒A thuộc đường trung trực của DEDE

⇒AI⇒AI là đường trung trực của DE.DE.

⇒AI⊥DE.⇒AI⊥DE.
Vậy AI⊥DEAI⊥DE(dpcm)(dpcm).

 Hình tham khảo:

image

Chúc bạn học tốt .