K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔABD vuông tại A và ΔABC vuông tại A có

AB chung

AD=AC

Do đó: ΔABD=ΔABC

b: Ta có: ΔABD=ΔABC

nên BD=BC

hay ΔBDC cân tại B

17 tháng 3 2017

a) Chứng minh được tam giác ABC = tam giác A.BD (c-g-c), từ đó suy ra được tam giác BCD đều

b) Dùng kết quả câu a, ta có BC = CD = 2AC

17 tháng 12 2019

a: Sửa đề: tính AB

AB=căn 5^2-3^2=4cm

b: Xét ΔABC vuông tại A và ΔABD vuông tại A có

AB chung

AC=AD

=>ΔABC=ΔABD

c: ΔABC=ΔABD

=>BC=BD

=>ΔBCD cân tại B

11 tháng 2 2015

Tam giác ABC vuông tại A => tam giác ABD cũng vuông tại D

a) Xét 2 tam giác : ABD và BẮC, ta có:

AD = AC  (GT)

AB LÀ CẠNH CHUNG

vậy tam giác ABD = tam giác ABC  ( 2 cạnh góc vuông bằng nhau )

b)  Từ tam giác ABD = tam giác ABC  ( 2 cạnh góc vuông bằng nhau )

=> góc ABD = góc ABC ( 2 góc tương ứng )

=> BD = BC ( 2 CẠNH TƯƠNG ỨNG )

Xét 2 tam giác : MBD và MCB, ta có :

        BM là cạnh chung

        góc ABD = góc ABC

         BD = BC

=> tam giác MBD = TAM GIÁC MCB ( c . g. c)

ko sai đâu

11 tháng 2 2015

Tam giác ABC vuông tại A => tam giác ABD cũng vuông tại D

a) Xét 2 tam giác : ABD và BẮC, ta có:

AD = AC  (GT)

AB LÀ CẠNH CHUNG

vậy tam giác ABD = tam giác ABC  ( 2 cạnh góc vuông bằng nhau )

b)  Từ tam giác ABD = tam giác ABC  ( 2 cạnh góc vuông bằng nhau )

=> góc ABD = góc ABC ( 2 góc tương ứng )

=> BD = BC ( 2 CẠNH TƯƠNG ỨNG )

Xét 2 tam giác : MBD và MCB, ta có :

        BM là cạnh chung

        góc ABD = góc ABC

         BD = BC

=> tam giác MBD = TAM GIÁC MCB ( c . g. c)

        chính xác, nhớ like nhoa!!!!

a: Xét ΔABC vuông tại A và ΔADE vuông tại A có

AB=AD

AC=AE

Do đó: ΔABC=ΔADE
=>BC=DE
b: Xét ΔABD vuông tại A có AB=AD

nên ΔABD vuông cân tại A

=>\(\widehat{ABD}=\widehat{ADB}=45^0\)

Xét ΔAEC vuông tại A có AE=AC

nên ΔAEC vuông cân tại A

=>\(\widehat{AEC}=\widehat{ACE}=45^0\)

Ta có: \(\widehat{ABD}=\widehat{AEC}\left(=45^0\right)\)

mà hai góc này là hai góc ở vị trí so le trong

nên BD//CE