Cho tam giác ABC, các tia phân giác của góc B và góc C cắt nhau tại O. Từ A vẽ một đường thẳng vuông góc với OA cắt BO và CO lần lượt tại M và N. Chứng minh rằng BM vuông góc với BN; CM vuông góc với...
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Em tham khảo:Câu hỏi của Nguyễn Quang Nam - Toán lớp 8 - Học toán với OnlineMath
Câu hỏi của Nguyễn Quang Nam - Toán lớp 8 - Học toán với OnlineMath
Tham khảo tại link trên!
Câu hỏi của Nguyễn Quang Nam - Toán lớp 8 - Học toán với OnlineMath
Tham khảo tại link trên nhé!
Câu hỏi của Nguyễn Quang Nam - Toán lớp 8 - Học toán với OnlineMath
Tham khảo tại link trên nhé!
a) Chứng minh BM vuông với BN
Gọi chân đường cao kẻ từ A xuống CA, AB, CB lần lượt là H; I; K
Theo bài ra ta có: NM vuông góc AO
=> ^NAO =90^o => ^NAB + ^OAB =90^o (1)
=> ^HAN + ^CAO =90^o (2)
Và ta có: BO; CO là 2 đường phân giác góc B, C của tan giác ABC
=> AO là phân giác góc A của tam giác ABC
=> ^BAO = ^CAO (3)
Từ (1); (2); (3)
=> ^HAN = ^NAB hay AN là phân giác góc ngoài của tam giác ABC tại đỉnh A
Xét tam giác vuông HNA và tam giác vuông INA có: AN chung và ^HAN = ^NAB ( chứng minh trên)
=> Tam giác HNA = tam giác INA
=> NH=NI (4)
Xét tam giác vuông CHN và ta, giác vuông CKN có: CN chung và ^HCN = ^KCN ( vì N thuộc phân giác góc C của tam giác ABC)
=> Tam giác CHN = Tam giác CKN
=> NH=NK (5)
Từ (4) ; (5)
=> NI=NK
Xét tam giác vuông NKB và tam giác vuông NIB có: NI=NK ( chứng minh trên) và NB chung
=> Tam giác NKB =tam giác NIB
=> ^ KBN =^IBN = 1/2 ^ABK
Mặt khác ^ABM =^CBM =1/2 ^ABC ( M thuộc phân giác góc B)
=> ^NBM =^IBN +^ABM = 1/2 ^ABK +1/2 ^ABC =1/2 ( ^ABK + ^ABC )=1/2 . 180^o =90 ^o
=> BM vuông góc BN
b) Tương tự
Câu hỏi của Nguyễn Quang Nam - Toán lớp 8 - Học toán với OnlineMath
Tham khảo bài 3 tại link trên nhé!
Em tự vẽ hình nhé!
Xét tam giác ABC, O là giao điểm của các tia phân giác của góc B và C nên tia AO là tia phân giác của góc A.
Có \(AN\perp AO\) nên AN là tia phân giác ngoài tại đỉnh A của tam giác ABC. Tia phân giác ngoài AN và tia phân giác trong CO của tam giác ABC cắt nhau tại N.
=> tia BN là tia phân giác ngoài tại đỉnh B của tam giác ABC. Do đó \(BM\perp BN\) (2 tia phân giác ngoài của 2 góc kề bù)
Chứng minh tương tự được \(CM\perp CN\)
Chị Chi trả lời cái gì vậy ạ, em nghe chẳng hiểu cái gì hết