Cho tam giác ABC vuông tai A ,đường phân giác BE .Kẻ EH vuông góc với BC (H thuôc BC). Goi K là giao điểm của AB và HE .Chứng minh rằng:
a) Tam giác ABE = tam giác HBE
b) BE là đường trung trưc của đoan thẳng AH
c) EK= EC
d) AE nhỏ hơn EC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABE vuông tại A và ΔHBE vuông tại H có
BE chung
góc ABE=góc HBE
=>ΔABE=ΔHBE
b: ΔBAE=ΔBHE
=>BA=BH và EA=EH
=>BE là trung trực của AH
c: Xét ΔEAK vuông tại A và ΔEHC vuông tại H có
EA=EH
góc AEK=góc HEC
=>ΔEAK=ΔEHC
=>EK=EC
=>ΔEKC cân tại E
1. ΔABE = ΔHBE
Xét ΔABE và ΔHBE, ta có :
(gt)
( BE là đường phân giác của góc HBA).
BE là cạnh chung.
=> ΔABE = ΔHBE
2. BE là đường trung trực của AH :
BA =BH và EA = EH (ΔABE = ΔHBE)
=> BE là đường trung trực của AH .
3. EK = EC
Xét ΔKAE và ΔCHE, ta có :
(gt)
EA = EH (cmt)
( đối đỉnh).
=> ΔKAE và ΔCHE
=> EK = EC
4. EC > AC
Xét ΔKAE vuông tại A, ta có :
KE > AE (KE là cạnh huyền)
Mà : EK = EC (cmt)
=> EC > AC.
1. ΔABE = ΔHBE
Xét ΔABE và ΔHBE, ta có :
(gt)
( BE là đường phân giác BE).
BE là cạnh chung.
=> ΔABE = ΔHBE
2. BE là đường trung trực của AH :
BA =BH và EA = EH (ΔABE = ΔHBE)
=> BE là đường trung trực của AH .
3. EK = EC
Xét ΔKAE và ΔCHE, ta có :
(gt)
EA = EH (cmt)
( đối đỉnh).
=> ΔKAE và ΔCHE
=> EK = EC
4. EC > AC
Xét ΔKAE vuông tại A, ta có :
KE > AE (KE là cạnh huyền)
Mà : EK = EC (cmt)
=> EC > AC.
a) xet tam giac ABE vuong tai A va tam giac HBE vuong tai H ta co
BE=BE ( canh chung) ; goc ABE= goc HBE ( BE la tia p/g goc B)
--> tam giac ABE= tam giac HBE ( ch=gn)
b) ta co
BA=BH ( tam giac ABE= tam giac HBE)
EA=EH( tam giac ABE= tam giac HBE)
==> BE la duong trung truc cua AH
c) xet tam giac EKA va tam giac ECH ta co
AE=EH ( tam giacABE= tam giacHBE) ; goc EAK= goc EHC (=90); goc AEK= goc HEC ( 2 goc doi dinh )
--> tam giac EKA = tam giac ECH ( g--c-g)
--> EK=EC (2 canh tuong ung )
d) tu diem E den duong thang HC ta co :
EH la duong vuong goc ( EH vuong goc BC)
EC la duong xien
-> EH<EC ( quan he duong xien duong vuong goc)
ma EH= AE ( tam giac ABE= tam giac HBE)
nen AE < EC
Cho tam giác ABC vuông tại a ; đường phân giác BE. kẻ EH cuông góc BC(H thuộc BC) Gọi K là giao điểm của AB và HE . Chứng minh rằng
1) Tam giác ABE=tam giác HBE
2) BE là đường trung trực của đoạn thẳng AH; Chứng minh BE vuông góc KC
3) AE<EC
mình chỉ biết chứng minh phần a thui,mong bạn thông cảm nha
a)xét tam giác ABE và tam giác HBE có
góc BAE= góc BHE(= 90 độ)
cạnh BE chung
góc ABE= góc HBE(giả thiết)
=>tam giác ABE = tam giác HBE(c/h-g/n)(đpcm)
Hình tự vẽ
a)Xét hai tam giác vuông ABE và HBE CÓ:
AE-chung
góc ABE=góc HBE(gt)
=>tam giác ABE=tam giác HBE(ch-gn)
b)Có tam giác ABE=tam giác HBE(cmt)
=>AB=BH
=>Tam giác BHA cân tại B
mà BE là p/g của góc ABH
=>BE là đường cao, đường trung tuyến
=>BE\(\perp\) AH
c)Xét tam giác AEK và tam giác HEC CÓ
góc KAE=góc EHC=900
AE=EH
góc AEK=góc HEC
=>tam giác AEK= tam giác HEC(c.g.c)
=>EK=EC
d)Xét tam giác EHC có góc EHC=900
=> EC là cạnh lớn nhất
=>EC>EH
Mà EH=AE
=>EC>AE
hình tự kẻ nghen:33333
a) áp dụng định lý pytago vào tam giác vuông ABC
=> AB^2+AC^2=BC^2
=> BC^2-AB^2=AC^2
=> AC^2=5^2-4^2=25-16=9
=> AC=3 (AC>0)
b) xét tam giác BAE và tam giác BHE có
B1= B2(gt)
BE chung
BAE=BHE(=90 độ)
=> tam giác BAE= tam giác BHE (ch-gnh)
c) ta có AC vuông góc với BK
HK vuông góc với BC
và AC,HK,BE cùng giao nhau tại E
=> BE vuông góc với KC ( 3 đường cao trong tam giác cùng đi qua một điểm )
bai nay to lam roi de ma
a) Xét tam giác vuông ABE và tam giác vuông HBE có
BE là cạnh chung
Góc ABE = góc HBE (giả thiết)
Do đó tam giác vuông ABE = tam giác vuông HBE (cạnh huyền - góc nhọn)
b) Gọi giao điểm của AH và BE là O
Xét tam giác ABO và tam giác HBO có
AB = BH (tam giác vuông ABE = tam giác vuông HBE)
góc ABO = góc HBO (giả thiết)
BE là cạnh chung
Do đó tam giác ABO = tam giác HBO ( c-g-c)
suy ra góc ABO = góc HBO (2 góc tương ứng) (1)
mà góc ABO + góc HBO = 180 độ
nên góc ABO = góc HBO = 90 độ (2)
Từ (1) và (2) ta có
BE là đường trung trực của đoạn thẳng AB
d) Theo câu a ta có AE = EH (2 cạnh tương ứng) (3)
Xét tam giác vuông EHC có
EH < EC ( trong tam giác vuông cạnh huyền là cạnh lớn nhất ) (4)
Từ (3) và (4) ta có AE < EC (đpcm)