cho tam giác abc vuông tại a góc b bằng 60 độ vẽ ah vuông góc với bc tại H.Trên AC lấy D,AD=AH.Gọi I là trung điểm của HD
C/m
a)tam giác AHI=ADI=> AI vuông góc với HD
b)tia AI cắt HC tại K.C/m tam giác AHK=ADK=>AB//KD
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\widehat{HAB}=30^0\)
b: Xét ΔAHI và ΔADI có
AH=AD
AI chung
HI=DI
Do đó: ΔAHI=ΔADI
a, AH = AD (gt)
=> tam giác AHD cân tại A (đn)
=> góc ADI = góc AHI (tc)
xét tam giác ADI và tam giác AHI có : AD = AH (gt)
DI = IH do I là trung điểm của DH (gt)
=> tam giác ADI = tam giác AHI (c-g-c)
b, tam giác AHC vuông tại H
=> góc CAH + góc ACH = 90 (đl)
có ACH = 30 (gt)
=> góc CAH = 60
xét tam giác AHD cân tại A (câu a)
=> tam giác AHD đều (dh)
c, tam giác ADI = tam giác AHI (Câu a)
=> góc DAK = góc HAK (đn)
xét tam giác DAK và tam giác HAK có : AK chung
AD = AH (gt)
=> tam giác DAK = tam giác HAK (c-g-c)
Bài này dễ lắm, mình không có điện thoại chụp hình nên bạn tự vẽ hình lên nhé.
a) Xét \(\Delta ADE\) và \(\Delta AHE:\)
AD=AH(gt)
AE: cạnh chung
DE=HE (E là trung điểm của DH)
=> \(\Delta ADE=\Delta AHE\left(c.c.c\right)\)
=> \(\widehat{AED}=\widehat{AEH}\) (2 góc t/ứ)
Mà \(\widehat{AED}+\widehat{AEH}=180^o\) (2 góc kề bù)
=> \(\widehat{AED}+\widehat{AED}=180^o\)
=> \(2\widehat{AED}=180^o\Rightarrow\widehat{AED}=90^o\)
=> AE vuông góc với HD
b) Xét \(\Delta ADF\) và \(\Delta AHF:\)
AD=AH
AF: cạnh chung
\(\widehat{DAF}=\widehat{HAF}\) (\(\Delta ADE=\Delta AHE\))
=> \(\Delta ADF=\Delta AHF\left(c,g,c\right)\)
b) Vì \(\Delta ADF=\Delta AHF\) (cm ở câu b)
=> \(\widehat{ADF}=\widehat{AHF}=90^o\)
=> \(\widehat{FDC}=90^o\)
=> \(\widehat{FCD}+\widehat{CFD}=90^o\) (1)
Mà \(\Delta ABC\) vuông tại A
=> \(\widehat{ABC}+\widehat{ACB}=90^o\) (2)
Từ (1) và (2) suy ra: \(\widehat{CFD}=\widehat{ABC}\)
a: Xét ΔAHI và ΔADI có
AH=AD
HI=DI
AI chung
Do đó: ΔAHI=ΔADI
Ta có: ΔAHD cân tại A
mà AI là đường trung tuyến
nên AI là đường cao
b: Xét ΔAHK và ΔADK có
AH=AD
\(\widehat{HAK}=\widehat{DAK}\)
AK chung
Do đó: ΔAHK=ΔADK