K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔAHI và ΔADI có 

AH=AD

HI=DI

AI chung

Do đó: ΔAHI=ΔADI

Ta có: ΔAHD cân tại A

mà AI là đường trung tuyến

nên AI là đường cao

b: Xét ΔAHK và ΔADK có 

AH=AD

\(\widehat{HAK}=\widehat{DAK}\)

AK chung

Do đó: ΔAHK=ΔADK

 

13 tháng 3 2021

image

13 tháng 3 2021

image

13 tháng 3 2021

image

13 tháng 3 2021

image

24 tháng 12 2021

a: \(\widehat{HAB}=30^0\)

b: Xét ΔAHI và ΔADI có

AH=AD

AI chung

HI=DI

Do đó: ΔAHI=ΔADI

20 tháng 2 2020

a, AH = AD (gt)

=> tam giác AHD cân tại A (đn)

=> góc ADI = góc AHI (tc)

xét tam giác ADI và tam giác AHI có : AD = AH (gt)

DI = IH do I là trung điểm của DH (gt)

=> tam giác ADI = tam giác AHI (c-g-c)

b, tam giác AHC vuông tại H 

=> góc CAH + góc ACH = 90 (đl)

có ACH = 30 (gt)

=> góc CAH = 60

xét tam giác AHD cân tại A (câu a)

=> tam giác AHD đều (dh)

c, tam giác ADI = tam giác AHI (Câu a)

=>  góc DAK = góc HAK (đn)

xét tam giác DAK và tam giác HAK có : AK chung

AD = AH (gt)

=> tam giác DAK = tam giác HAK (c-g-c)

12 tháng 12 2017

khó lắm đề thi toán cuối kì 1 lớp 7

4 tháng 1 2019

a, TG HAB có :

BAH +  BHA + B = 180

=> BAH + 90 + 60 = 180

=> HAB = 30 

b,chứng minh tam giác AHI và tam giác ADI bằng nhau đúng ko

Xét TG AIH và TG AID có :

AH = AD (gt)

AI cạnh chung

HI = ID (gt)

=> TG AIH = TG AID (c-c-c)

12 tháng 1 2021

Bài này dễ lắm, mình không có điện thoại chụp hình nên bạn tự vẽ hình lên nhé.

a) Xét \(\Delta ADE\) và \(\Delta AHE:\)

AD=AH(gt)

AE: cạnh chung

DE=HE (E là trung điểm của DH)

=> \(\Delta ADE=\Delta AHE\left(c.c.c\right)\)

=> \(\widehat{AED}=\widehat{AEH}\) (2 góc t/ứ)

Mà \(\widehat{AED}+\widehat{AEH}=180^o\) (2 góc kề bù)

=> \(\widehat{AED}+\widehat{AED}=180^o\)

=> \(2\widehat{AED}=180^o\Rightarrow\widehat{AED}=90^o\)

=> AE vuông góc với HD

b) Xét \(\Delta ADF\) và \(\Delta AHF:\)

AD=AH

AF: cạnh chung

\(\widehat{DAF}=\widehat{HAF}\) (\(\Delta ADE=\Delta AHE\))

=> \(\Delta ADF=\Delta AHF\left(c,g,c\right)\)

b) Vì \(\Delta ADF=\Delta AHF\) (cm ở câu b)

=> \(\widehat{ADF}=\widehat{AHF}=90^o\)

=> \(\widehat{FDC}=90^o\)

=> \(\widehat{FCD}+\widehat{CFD}=90^o\)  (1)

Mà \(\Delta ABC\) vuông tại A

=> \(\widehat{ABC}+\widehat{ACB}=90^o\) (2)

Từ (1) và (2) suy ra: \(\widehat{CFD}=\widehat{ABC}\)