tìm n thuộc Z để 19n / 9(n-1)có giá trị là số nguyên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Để a là phân số thì \(n+4\ne0\Rightarrow n\ne-4\)
b) \(a=\frac{n+9}{n+4}=\frac{n+4+5}{n+4}=1+\frac{5}{n+4}\)
\(a=\frac{1}{2}\Rightarrow1+\frac{5}{n+4}=\frac{1}{2}\)
\(\Rightarrow\frac{5}{n+4}=\frac{1}{2}-1=-\frac{1}{2}\)
\(\frac{5}{n+4}=\frac{5}{-10}\)
\(\Rightarrow n+4=-10\Rightarrow n=-14\)
c) Để a là số nguyên thì \(\frac{5}{n+4}+1\) có giá trị nguyên
\(\Rightarrow\frac{5}{n+4}\) có giá trị nguyên
\(\Rightarrow5⋮n+4\)
Vì \(n+4\inℤ\) nên \(n+4\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
\(\Rightarrow n\in\left\{-3;-5;1;-9\right\}\)
a, để a là phân số thì mẫu số phải khác 0
vây nên n+4 phải khác 0 suy ra n phải khác -4
b, n+9/n+4=1/2 suy ra 2n+18=n+4 suy ra 2n-n=4-18 suy ra n=-14
c, a=n+9/n+4 có g trị nguyên
suy ra n+9 chia hết n+4
suy ra n+4+5 chia hết cho n+4
suy ra 5 chia hết cho n+4 hay n+4 thuộc ư(5)
suy ra n+4 thuộc (1;5;-1;-5)
suy ra n thuộc (-3;1;-5;-9)
chúc bạn hok tốt
A nguyên thì 3n^2-12+21 chia hết cho n-2
=>\(n-2\in\left\{1;-1;3;-3;7;-7;21;-21\right\}\)
=>\(n\in\left\{3;1;5;-1;9;-5;23;-19\right\}\)
n - 1 là ước của 19 và đồng thời n là bội của 9
do n - 1 là ước của 19 nên suy ra n - 1 = 1 => n = 2
n - 1 = - 1 = > n = 0
n - 1 = 19 => n = 20
n - 1 = -19 => n = -18
trong 4 giá trị của n chỉ có n = 0 và n = -18 là bội của 9
=> n = 0 or n = -19
tích nha
19/n-1 . n/9=19n/(n-1).9 thuộc Z
=>19n chia hết cho (n-1).9
=>19n chia hết ch0 n-1 và 19n chia hết 9
do ƯCLN (n,n-1)=1 và UCLN(19,9)
=>19 chia hết cho n-1 và n chia hết 9
=>n-1 thuộc -1, 1, -19, 19
=>n thuộc 0,2,-18,20
mà n chia hết cho 9
=>n thuộc 0,-18.