cho tam giác ABC cân tại A cho AM là tia phân giác của góc BAC.
cho AC=5cm AB=6cm tính diện tích abm
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét ΔABC có
BM là đường phân giác ứng với cạnh AC(gt)
nên \(\dfrac{AM}{AB}=\dfrac{CM}{BC}\)
hay \(\dfrac{AM}{CM}=\dfrac{AB}{BC}\)(1)
Xét ΔABC có
CN là đường phân giác ứng với cạnh AB(gt)
nên \(\dfrac{AN}{AC}=\dfrac{BN}{BC}\)
hay \(\dfrac{AN}{BN}=\dfrac{AC}{BC}\)(2)
Ta có: ΔABC cân tại A(gt)
nên AB=AC(3)
Từ (1), (2) và (3) suy ra \(\dfrac{AN}{BN}=\dfrac{AM}{MC}\)
hay MN//BC(Đpcm)
b) Ta có: \(\dfrac{AM}{AB}=\dfrac{CM}{BC}\)(cmt)
nên \(\dfrac{AM}{5}=\dfrac{CM}{6}\)
mà AM+CM=AC(M nằm giữa A và C)
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{AM}{5}=\dfrac{CM}{6}=\dfrac{AM+CM}{5+6}=\dfrac{AC}{11}=\dfrac{5}{11}\)
Do đó:
\(\left\{{}\begin{matrix}\dfrac{AM}{5}=\dfrac{5}{11}\\\dfrac{CM}{6}=\dfrac{5}{11}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AM=\dfrac{25}{11}\left(cm\right)\\CM=\dfrac{30}{11}\left(cm\right)\end{matrix}\right.\)
Xét ΔABC có MN//BC(cmt)
nên \(\dfrac{MN}{BC}=\dfrac{AM}{AC}\)(Hệ quả Định lí Ta lét)
\(\Leftrightarrow\dfrac{MN}{6}=\dfrac{25}{11}:5=\dfrac{25}{11}\cdot\dfrac{1}{5}=\dfrac{5}{11}\)
hay \(MN=\dfrac{30}{11}\left(cm\right)\)
c) Nửa chu vi của ΔABC là:
\(P_{ABC}=\dfrac{AB+AC+BC}{2}=\dfrac{5+5+6}{2}=\dfrac{16}{2}=8\left(cm\right)\)
Diện tích tam giác ABC là:
\(S_{ABC}=\sqrt{8\cdot\left(8-5\right)\cdot\left(8-5\right)\cdot\left(8-6\right)}=\sqrt{8\cdot3\cdot3\cdot2}=\sqrt{16\cdot9}=4\cdot3=12\left(cm^2\right)\)
Ta có: ΔANM∼ΔABC(gt)
nên \(\dfrac{S_{ANM}}{S_{ABC}}=\left(\dfrac{AM}{AC}\right)^2=\left(\dfrac{5}{11}\right)^2=\dfrac{25}{121}\)
\(\Leftrightarrow S_{ANM}=\dfrac{25}{121}\cdot12=\dfrac{300}{121}\left(cm^2\right)\)
tam giác ABC cân tại A thì sao AB khác AC được ?
đề sai rồi bạn