K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
2 tháng 12 2023

Đề không hiển thị hình vẽ. Bạn xem lại.

14 tháng 6 2021

từ A hạ \(AE\perp DC\)

từ B hạ \(BF\perp DC\)

\(AB//CD=>AB//EF\)\(=>ABCD\) là hình chữ nhật

\(=>AB=EF=2cm\)

vì ABCD là hình thang cân\(=>\left\{{}\begin{matrix}AD=BC\\\angle\left(ADE\right)=\angle\left(BCF\right)\end{matrix}\right.\)

mà \(\angle\left(AED\right)=\angle\left(BFC\right)=90^o\)

\(=>\Delta ADE=\Delta BFC\left(ch.cgn\right)=>DE=FC=\dfrac{DC-EF}{2}=\dfrac{6-2}{2}=2cm\)

xét \(\Delta ADE\) vuông tại E có: \(AE=\sqrt{AD^2-ED^2}=\sqrt{3^2-2^2}=\sqrt{5}cm\)

\(=>S\left(ABCD\right)=\dfrac{\left(AB+CD\right)AE}{2}=\dfrac{\left(2+6\right)\sqrt{5}}{2}=4\sqrt{5}cm^2\)

15 tháng 6 2021

cảm ơn cậu

 

2 tháng 9 2020

                                                            Bài giải

A B C D

Hình thang ABCD có \(\hept{\begin{cases}AB\text{ }//\text{ }CD\\\widehat{ACD}=\widehat{BDC}\end{cases}}\) thì hình thang ABCD là hình thang cân

12 tháng 9 2017

Bài 1: △ABD=△BAC(c−g−c)△ABD=△BAC(c−g−c)

=>AC=BD=>AC=BD

△ACD=△BDC(c−c−c)△ACD=△BDC(c−c−c)

=>ADCˆ=BCDˆ=>ADC^=BCD^

Mà ADCˆ+DABˆ+ABCˆ+BCDˆ=360oADC^+DAB^+ABC^+BCD^=360o

=>2(DABˆ+ADCˆ)=360o=>2(DAB^+ADC^)=360o

=>DABˆ+ADCˆ=180o=>DAB^+ADC^=180o

=>AB//CD=>AB//CD

=>ABCD=>ABCD là hình thang mà có 2 góc ở đáy bằng nhau nên lf thang cân :D
Bài 4: chắc mấy bạn ở dưới vẽ sai hình :3 -_-

hình vẽ chính xác là ta vẽ được một hình thang cân với AD//BCAD//BC sẽ có được đầy đủ điều kiện đề bài đưa ra :D

Giải:

△ADB=△DAC△ADB=△DAC (c-c-c)

=>DABˆ=ADCˆ=>DAB^=ADC^

Từ đây chứng minh như câu 1 là =>đpcm :))

3 tháng 12 2018

Gợi ý: Kẻ AH ^ CD tại H, kẻ BK ^ CD tại K

Tính được SABCD = 180cm2

22 tháng 10 2018

Giải bài 17 trang 75 Toán 8 Tập 1 | Giải bài tập Toán 8

Gọi E là giao điểm của AC và BD.

Giải bài 17 trang 75 Toán 8 Tập 1 | Giải bài tập Toán 8 ⇒ ΔEDC cân tại E ⇒ ED = EC (1)

+ AB//CD ⇒ Giải bài 17 trang 75 Toán 8 Tập 1 | Giải bài tập Toán 8 (Các cặp góc so le trong)

Mà Giải bài 17 trang 75 Toán 8 Tập 1 | Giải bài tập Toán 8

⇒ ΔEAB cân tại E ⇒ EA = EB (2)

Từ (1) và (2) suy ra: EA + EC = EB + ED hay AC = BD.

Vậy hình thang ABCD có hai đường chéo AC = BD nên là hình thang cân.