K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 12 2017

Câu hỏi của trần manh kiên - Toán lớp 9 - Học toán với OnlineMath

Em tham khảo câu tương tự tại đây nhé.

AH
Akai Haruma
Giáo viên
26 tháng 4 2018

Lời giải:

Ta có:

\(f(x)=x\left(\frac{x^{2013}}{3}-\frac{x^{2014}}{5}+\frac{x^{2015}}{7}+\frac{x^2}{2}\right)-\left(\frac{x^{2014}}{3}-\frac{x^{2015}}{5}+\frac{x^{2016}}{7}+\frac{x^2}{2}\right)\)

\(f(x)=\frac{x^{2014}}{3}-\frac{x^{2015}}{5}+\frac{x^{2016}}{7}+\frac{x^3}{2}-\left(\frac{x^{2014}}{3}-\frac{x^{2015}}{5}+\frac{x^{2016}}{7}+\frac{x^2}{2}\right)\)

\(f(x)=\frac{x^3}{2}-\frac{x^2}{2}=\frac{x^2(x-1)}{2}\)

Với mọi giá trị nguyên của $x$ thì $(x-1)x$ là tích của hai số nguyên liên tiếp nên luôn chia hết cho $2$

Do đó: \(x^2(x-1)\vdots 2\Rightarrow f(x)=\frac{x^2(x-1)}{2}\in\mathbb{Z}\) với mọi gt nguyên của $x$ (đpcm)

9 tháng 10 2016

Ta sẽ xét tính biến thiên của hàm số : 

Ta có \(f\left(x\right)=\left(x^3-3x^2+3x-1\right)+4=\left(x-1\right)^3+4\)

\(f\left(\frac{2017}{2016}\right)-f\left(\frac{2016}{2015}\right)=\left(\frac{2017}{2016}-1\right)^3-\left(\frac{2016}{2015}-1\right)^3\)

\(=\left(\frac{1}{2016}-\frac{1}{2015}\right)\left[\left(\frac{2017}{2016}-1\right)^2+\left(\frac{2016}{2015}-1\right)^2+\left(\frac{2017}{2016}-1\right)\left(\frac{2016}{2015}-1\right)\right]\)

\(=\left(\frac{1}{2016}-\frac{1}{2015}\right)\left(\frac{1}{2016^2}+\frac{1}{2015^2}+\frac{1}{2016}.\frac{1}{2015}\right)< 0\)

\(\Rightarrow f\left(\frac{2017}{2016}\right)-f\left(\frac{2016}{2015}\right)< 0\Rightarrow f\left(\frac{2017}{2016}\right)< f\left(\frac{2016}{2015}\right)\)

20 tháng 9 2019

Ta sẽ xét tính biến thiên của hàm số : 

Ta có f\left(x\right)=\left(x^3-3x^2+3x-1\right)+4=\left(x-1\right)^3+4f(x)=(x3−3x2+3x−1)+4=(x−1)3+4

f\left(\frac{2017}{2016}\right)-f\left(\frac{2016}{2015}\right)=\left(\frac{2017}{2016}-1\right)^3-\left(\frac{2016}{2015}-1\right)^3f(20162017​)−f(20152016​)=(20162017​−1)3−(20152016​−1)3

=\left(\frac{1}{2016}-\frac{1}{2015}\right)\left[\left(\frac{2017}{2016}-1\right)^2+\left(\frac{2016}{2015}-1\right)^2+\left(\frac{2017}{2016}-1\right)\left(\frac{2016}{2015}-1\right)\right]=(20161​−20151​)[(20162017​−1)2+(20152016​−1)2+(20162017​−1)(20152016​−1)]

=\left(\frac{1}{2016}-\frac{1}{2015}\right)\left(\frac{1}{2016^2}+\frac{1}{2015^2}+\frac{1}{2016}.\frac{1}{2015}\right)&lt; 0=(20161​−20151​)(201621​+201521​+20161​.20151​)<0

\Rightarrow f\left(\frac{2017}{2016}\right)-f\left(\frac{2016}{2015}\right)&lt; 0\Rightarrow f\left(\frac{2017}{2016}\right)&lt; f\left(\frac{2016}{2015}\right)⇒f(20162017​)−f(20152016​)<0⇒f(20162017​)<f(20152016​)

21 tháng 3 2019

Bổ sung :

➤ Bài 1 :

c/ Tính f(5)

21 tháng 4 2019

Sửa bài 2 : Tính giá trị của biểu thức M = 4 (a - b) (b - c) = (c - a)2.

Ta sẽ trừ tương ứng và nhóm các đơn thức đồng dạng với nhau để thực hiện phép tính:

a) H(x) = (2015 - 1).x2015 + (2014 - 1).x2014 + ...

= 2014.x2015 + 2013.x2014 + .... + x2

b) Để so sánh P(\(\frac{1}{2}\)) thì ta sẽ thay giá trị và sử dụng phương pháp đánh giá để một số phân số đầu tiên sẽ tìm ra quy luật. Rồi so sánh nhé. Phương pháp làm còn được gọi là phương pháp làm trội , làm giảm.