K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 12 2017

Ta có : S=3+3^3+3^5+3^7+.....+3^2013+3^2015

             = ( 3 + 3^3 + 3^5 ) + ( 3^7 + 3^9 + 3^11)+.....+( 3^2011 + 3^2013 + 3^2015)

             = 3.(1+3^2+3^4)+3^7.(1+3^2+3^4)+.....+3^2011.(1+3^2+3^4)

             = 3.91+3^7.91+......+3^2011.91

             = (3+3^7+.....+3^2011).91

Vì 91 chia hết cho 13 => (3+3^7+.....+3^2011).91 chia hết cho 13

Vậy S chia hết cho 13

27 tháng 3 2018

mơn mơn

9 tháng 12 2019

Ta có : S=22020+22019+22018+22017+22016+22015+22014+22013

              =22013(27+26+25+24+23+22+2+1)

             =22013.255

Vì 255\(⋮\)15 nên 22013.255\(⋮\)15

hay S\(⋮\)15

Vậy S\(⋮\)15.

30 tháng 9 2017

Vì A=2 mũ 2013
       = 2.2.2.2. ... .2  (2013 thừa số 2)

Mà A= 2.x  (x thuộc N)

Nên A chia hết cho 2

19 tháng 12 2015

A=2+22+23+...+22013

A=(2+22+23)+...+(22011+22012+22013)

A=2(1+2+22)+...+22011(1+2+22)

A=2.7+...+22011.7

A=7(2+...+22011) chia hết cho 7

=>A chia hết cho 7

tick tớ nha