K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 4 2016

a, E, F cùng nhìn BC dưới 1 góc 90 => tứ giác BFEC nội tiếp

cmtt F,E cung nhìn AH dưới 1 góc 90 => tứ giác AEHF nội tiếp =>góc EHC = góc BAC ( cùng bù với EHF)

b, Xét tam giác ABE và tam giác CHE có 

   góc BAC = góc EHC 

   góc BEA = góc CEH  = 90

=>tam giác BAE đồng dạng với tam giác CHE(gg) =>AE/HE=BE/CE=> EA.EC=EH.EC

c,cmtt câu a, ta được tứ giác BFHD =>góc ABE = góc FDA

                       tứ giác DHEC nội tiếp =>góc ADE = góc FCA

Lại có góc ABE = góc FCA vì cùng phụ với góc BAC => góc FDA=góc ADE => AD là phân giác của góc FDE 

cmtt =>FC và EB là phân giác của góc DFE và DEF 

=> H là tâm đường tròn nội tiếp tam giác DEF

a: Xét tứ giác AEHF có \(\widehat{AEH}+\widehat{AFH}=180^0\)

nên AEHF là tứ giác nội tiếp

b: Xét tứ giác BFEC có \(\widehat{BFC}=\widehat{BEC}=90^0\)

nên BFEC là tứ giác nội tiếp

=>\(\widehat{FEC}+\widehat{ABC}=180^0\)

a: Xét tứ giác BCEF có 

\(\widehat{BFC}=\widehat{BEC}\)

nên BCEF là tứ giác nội tiếp

Xét tứ giác CDHE có 

\(\widehat{HDC}+\widehat{HEC}=180^0\)

Do đó: CDHE là tứ giác nội tiếp

a: Xét tứ giác AEHF có

góc AEH+góc AFH=180 độ

=>AEHF là tứ giác nội tiếp

Xét tứ giác BFEC có

góc BFC=góc BEC=90 độ

=>BFEC là tứ giác nội tiếp

b: Xét (O) có

ΔABK nội tiếp

AK là đường kính

=>ΔABK vuông tại B

=>BK//CH

Xét (O) có

ΔACK nội tiếp

AK là đường kính

=>ΔACK vuông tại C

=>CK//BH

Xét tứ giác BHCK có

BH//CK

BK//CH

=>BHCK là hình bình hành

=>BC cắt HK tại trung điểm của mỗi đường

=>I là trung điểm của BC

8 tháng 3 2022

Xét tứ giác AEHF có 

^AEH + ^AFH = 1800

mà 2 góc này đối 

Vậy tứ giác AEHF là tứ giác nt 1 đường tròn 

8 tháng 3 2022

ủa o.O còn phần b à, mình bổ sung nhé

Xét tứ giác BCEF có 

^CEB = ^CKB = 900

mà 2 góc này kề, cùng nhìn cạnh BC 

Vậy tứ giác BCEF là tứ giác nt 1 đường tròn 

a: góc BFC=góc BEC=90 độ

=>BFEC nội tiếp

góc CDH+góc CEH=90+90=180 độ

=>CDHE nội tiếp

b: góc AFH+góc AEH=180 độ

=>AFHE nội tiếp

góc FEH=góc BAD

góc DEH=góc FCB

mà góc BAD=góc FCB

nên góc FEH=góc DEH

=>EH là phân giác của góc FED
Xét ΔBFE và ΔDHE có

góc BEF=góc DEH

góc BFE=góc DHE

=>ΔBFE đồng dạng với ΔDHE

8 tháng 2 2022

a. Xét tứ giác AEHF có: \(\left\{{}\begin{matrix}\widehat{HFA}=90^o\\\widehat{HEA}=90^o\end{matrix}\right.\)\(\Rightarrow\widehat{HFA}+\widehat{HEA}=180^o\)\(\Rightarrow\)Tứ giác AEHF nội tiếp đường tròn đường kính HA

Tương tự ta có, xét tứ giác BCEF có: \(\left\{{}\begin{matrix}\widehat{BFC}=90^o\\\widehat{BEC}=90^o\end{matrix}\right.\)\(\Rightarrow\widehat{BFC}+\widehat{BEC}=180^o\)\(\Rightarrow\) Tứ giác BCEF nội tiếp đường tròn đường kính BC

b. Xét đường tròn (O;R) có: \(\widehat{CNM}=\widehat{CBM}\) (cùng nhìn \(\stackrel\frown{CM}\))

Xét tứ giác BCEF nội tiếp đường tròn ta có: \(\widehat{CFE}=\widehat{CBE}\) (cùng nhìn \(\stackrel\frown{CM}\))

\(\Rightarrow\widehat{CNM}=\widehat{CFE}\) (ở vị trí đồng vị)

\(\Rightarrow\)MN//EF (đpcm)

a: Xét tứ giác AEHF có

\(\widehat{AEH}+\widehat{AFH}=180^0\)

Do đó: AEHF là tứ giác nội tiếp

Xét tứ giác BCEF có

\(\widehat{BFC}=\widehat{BEC}=90^0\)

Do đó: BCEF là tứ giác nội tiếp

a: Xét tứ giác AEHF có

góc AEH+góc AFH=180 độ

=>AEHF là tứ giác nội tiếp

Xét tứ giác BFEC có

góc BFC=góc BEC=90 độ

=>BFEC là tứ giác nội tiếp

b: Xét (O) có

ΔABK nội tiếp

AK là đường kính

=>ΔABK vuông tại B

=>BK//CH

Xét (O) có

ΔACK nội tiếp

AK là đường kính

=>ΔACK vuông tại C

=>CK//BH

Xét tứ giác BHCK có

BH//CK

BK//CH

=>BHCK là hình bình hành

=>BC cắt HK tại trung điểm của mỗi đường

=>I là trung điểm của BC

26 tháng 10 2018

1) Chứng minh tứ giác AEHF nội tiếp đường tròn

BE là đường cao ABC  ⇒ B E ⊥ A C ⇒ A E H ^ = 90 0

CF là đường cao  ∆ ABC  ⇒ C F ⊥ A B ⇒ A F H ^ = 90 0

Tứ giác AEHF có A E H ^ + A F H ^ = 180 0  nên tứ giác AEHF nội tiếp đường tròn

2) Chứng minh CE.CA = CD.CB

∆ ADC và  ∆ BEC có

A D C ^ = B E C ^ = 90 0  (AD,BE là các đường cao)

C ^  chung

Do đó  ∆ ADC ~ ∆ BEC(g-g)

⇒ D C E C = A C B C ⇒ D C . B C = C E . A C