cho đường thẳng a lấy 27 điểm phân biệt :.M1;M2;...;M27.Lấy một điểm A nằm ngoài đường thẳng a.Nối a với các điểm M1;M2;...;M27.Hỏi có bao nhiêu tam giác được tạo thành trên hình vẽ?Vì sao?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án D
Dễ có số cách chọn 3 điểm từ 11 điểm đã cho là : C 11 3 = 165
Để 3 điểm được chọn tạo thành một tam giác thì phải thỏa mãn 3 điểm đó không thẳng hàng. Do đó có hai trường hợp xảy ra :
- Thứ nhất có hai điểm trên đường thẳng a và một điểm trên đường thẳng b
- Thứ hai có một điểm trên đường thẳng a và hai điểm trên đường thẳng b
Từ đây suy ra số cách chọn 3 điểm để tạo thành một tam giác là : C 6 2 C 5 1 + C 6 1 C 5 2 = 135
Vậy xác suất cần tìm là 135 165 = 9 11 . => Chọn đáp án D.
Đáp án D
Dễ có số cách chọn 3 điểm từ 11 điểm đã cho là : C 11 3 = 165
Để 3 điểm được chọn tạo thành một tam giác thì phải thỏa mãn 3 điểm đó không thẳng hàng. Do đó có hai trường hợp xảy ra :
- Thứ nhất có hai điểm trên đường thẳng a và một điểm trên đường thẳng b
- Thứ hai có một điểm trên đường thẳng a và hai điểm trên đường thẳng b
Từ đây suy ra số cách chọn 3 điểm để tạo thành một tam giác là : C 6 2 C 5 1 + C 6 1 C 5 2 = 135
Biến cố A : "ba điểm tạo thành tam giác", tức là ba điểm không thẳng hàng.
Có 2 trường hợp:
- Hai điểm thuộc a và một điểm thuộc b có C 6 2 . C 5 1 cách
- Hai điểm thuộc b và một điểm thuộc a có C 6 1 . C 5 2 cách
Suy ra,số phần tử của biến cố A là:
Ω A = C 6 2 . C 5 1 + C 6 1 . C 5 2 = 135
Đáp án A.
Vậy cx nhảy vô trả lời. Tui L6 cx có thể lm mấy bài L5 trên mạng mà !!!
Số tam giác lập được thuộc vào một trong hai loại sau
Loại 1: Gồm hai đỉnh thuộc vào a và một đỉnh thuộc vào b
Số cách chọn bộ hai điểm trong 10 thuộc a:
Số cách chọn một điểm trong 15 điểm thuộc b:
Loại này có: tam giác.
Loại 2: Gồm một đỉnh thuộc vào a và hai đỉnh thuộc vào b
Số cách chọn một điểm trong 10 thuộc a:
Số cách chọn bộ hai điểm trong 15 điểm thuộc b:
Loại này có:
Vậy có tất cả: tam giác thỏa yêu cầu bài toán
Chọn C.