Với a,b,c là các chữ số (akhac 0),chứng minh: M=abc-cba/99 la 1 so nguyen (abc;cba la so nguyen)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Ta có: aaa¯¯¯¯¯¯¯¯=a.111=a.3.37aaa¯=a.111=a.3.37 chia hết cho a và chia hết cho 37 b, Ta có: Vì a, b là hai số tự nhiên nên a,b có các TH sau: TH1: a, b cùng tính chẵn lẻ=> (a+b) là 1 số chẵn nhưu vậy a+b chia hết cho 2 TH2: a, b khác tính chẵn lẻ thì 1 trong 2 số phải có 1 số chẵn khi đó số đó chia hết cho 2
a)
Ta có ab/abc là số có 2 chữ số CMR (chữ số hàng đơn vị khác 0).
Đặt ab = 10a + b và abc = 100a + 10b + c.
Theo đề bài, ta có phương trình:
(10a + b + 10b + a)/(100a + 10b + c) chia hết cho 11. (11a + 11b)/(100a + 10b + c) chia hết cho 11.
Điều này có nghĩa là 11a + 11b chia hết cho 100a + 10b + c.
Vì 11a + 11b = 11(a + b) và 100a + 10b + c = 11(9a + b) + c, ta có thể viết lại phương trình trên dưới dạng:
11(a + b) chia hết cho 11(9a + b) + c. Do đó, c chia hết cho 11.
Vậy, c là một số chia hết cho 11.
b)
Ta có abc - cba = 100a + 10b + c - (100c + 10b + a) = 99a - 99c = 99(a - c).
Vì 99(a - c) chia hết cho 99, ta có abc - cba chia hết cho 99.
vì a+c =9 nên để tổng abc+cba là số có 3 chử số thì tổng hàng chục b+b <10 nên b<5. vậy tập hợp A có 5 giá trị là 0,1,2,3,4
Theo đầu bài ta có:
abc + cba
= ( 100a + 10b + c ) + ( 100c + 10b + a )
= ( 100a + a ) + ( c + 100c ) + ( 10b + 10b )
= 101a + 101c + 20b
= 101 ( a + c ) + 20b
Do a + c = 9 nên:
= 101 * 9 + 20b
= 909 + 20b
- Do abc + cba là 1 số có 3 chữ số nên abc + cba < 1000 => 909 + 20b < 1000 => 20b < 91 => b < 4,55
- Do A là tập hợp các giá trị của chữ số b thỏa mãn điều kiện trên nên A = { 0 ; 1 ; 2 ; 3 ; 4 }
Vậy tập hợp A có 5 phần tử.
giá trị của abc là:891
a=8,b=9,c=1
thay thế: 891-198=693
vay : a=8,b=9,c=1
vương đơ không dễ thương chút nào mà vương đơ học lơdp mấy zậy còn mk lớp 4
cho M =(-a+b)-(b+c-a)+(c-a).Trong do b,c la so nguyen am hoac duong.a la so nguyen am.Chung minh M>0
Ta có: 100a+10b+c-(100c+10b+a)=600+10b+3
100a+10b+c-100c-10b-a=603+10b <=> 99a=99c+10b+603 (a, c khác 0 và 0\(\le\)a, b, c<10)
=> 7\(\le\)a \(\le\)9
+/ a=7 => 90=99c+10b => c=0 (loại)
+/ a=8 => 189=99c+10b => c=1 => b=9
+/ a=9 => 288=99c+10b => c=2; b=9
Vậy có 2 số thỏa mãn là: 819 và 829