cho tam giac ABC vuong tai A . Tia phân giác của góc B cắt AC tại D. Kẻ DE vuong goc voi BC (E thuoc BC). chung minh:
a.tam giac ABD = tam giac EBD
b.BD vuông góc voi AE
c.DC >DA
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét tam giác AHB và tam giác AHC:
AB=AC(gt)
= (gt)
AH là cạnh chung
=>
b) Từ câu a) => =(2 góc tương ứng) (*)
Ta có: + =180 độ (**)
Từ (*) và (**) => = ==90 độ
Vậy AHBC
c) Từ câu a)=> = (2 góc tương ứng);BH=HC(2 cạnh tương ứng)
Ta có:=180 độ - -
=180 độ - -
Mà = (cmt)
=>=
=>(g.c.g)
=>DB=EC
Ta có:AD=AB-BD
AE=AC-EC
Mà BD=EC;AB=AC
=>AD=AE
Xét và
AD=AE (cmt)
=(gt)
AH là cạnh chung
=>=(c.g.c)
=>===90(tương tự câu b)
=>AHDE
Vì DE AH;BCAH,Vậy DE song song BC
@FG★Ĵ❍ƙĔŔᵛᶰ chép mạng lỗi bài kìa,lần sau ghi nguồn vô nhá:)))
a) Xét tam giác AHB và tam giác AHC:
AB=AC(gt)
\(\widehat{BAH}\) =\(\widehat{CAH}\) (gt)
AH là cạnh chung
=>\(\Delta AHB=\Delta AHC\)
b) Từ câu a) =>\(\widehat{AHB}\) =\(\widehat{AHC}\)(2 góc tương ứng) (*)
Ta có:\(\widehat{AHB}\) + \(\widehat{AHC}\) =180 độ (**)
Từ (*) và (**) =>\(\widehat{AHB}\) =\(\widehat{AHC}\) =\(\frac{180}{2}\)=90 độ
Vậy AH\(⊥\)BC
c) Từ câu a)=> \(\widehat{B}\)=\(\widehat{C}\) (2 góc tương ứng);BH=HC(2 cạnh tương ứng)
Ta có:\(\widehat{DHB}\)=180 độ -\(\widehat{BDH}\) -\(\widehat{DBH}\)
\(\widehat{EHC}\)=180 độ -\(\widehat{HEC}\) -\(\widehat{ECH}\)
Mà \(\widehat{B}\)=\(\widehat{C}\) (cmt)
=>\(\widehat{DHB}\)=\(\widehat{EHC}\)
=>\(\Delta DHB=\Delta EHC\)(g.c.g)
=>DB=EC
Ta có:AD=AB-BD
AE=AC-EC
Mà BD=EC;AB=AC
=>AD=AE
Xét \(\Delta ADI\) và \(\Delta AEI\)
AD=AE (cmt)
\(\widehat{DAI}\)=\(\widehat{EAI}\)(gt)
AH là cạnh chung
=>\(\Delta ADI\)=\(\Delta AEI\)(c.g.c)
=>\(\widehat{AID}\)=\(\widehat{AIE}\)=\(\frac{180}{2}\)=90(tương tự câu b)
=>AH\(⊥\)DE
Vì DE\(⊥\) AH;BC\(⊥\)AH,Vậy DE song song BC
a) Ta có: \(3^2+4^2=25\)
\(5^2=25\)
suy ra: \(AB^2+AC^2=BC^2\)
\(\Rightarrow\)\(\Delta ABC\)\(\perp\)\(A\)
b) Xét 2 tam giác vuông: \(\Delta BAD\)và \(\Delta BHD\)có:
\(\widehat{ABD}=\widehat{HAD}\) (gt)
\(BD:\)cạnh chung
suy ra: \(\Delta BAD=\Delta BHD\)(ch_gn)
\(\Rightarrow\)\(DA=DH\)(cạnh tương ứng)
c) Xét 2 tam giác vuông: \(\Delta ADE\)và \(\Delta HDC\)có:
\(AD=HD\)(cmt)
\(\widehat{ADE}=\widehat{HDC}\) (đđ)
suy ra: \(\Delta ADE=\Delta HDC\)(cgv_gn)
\(\Rightarrow\)\(DE=DC\)(cạnh tương ứng)
bạn uyên làm đúng phần a r
b) gọi giao điểm của AE và BD tại H
tam giac ABD= tam giac EBD ( cm cau a)
=> AB=EB ( 2 canh tuong ung)
xét tam giác EBH và tam giác ABH có
chung BH
EBH=ABH(gt)
AB = EB (cmt)
=> 2 tam giác này bằng nhau(c.g.c)
=>góc BHE=góc BHA
mà 2 góc này kề bù => mỗi góc này = 90 độ
=> BD vuông góc với AE
a) xét tam giác ABD và tam giác EBD có:
góc A = góc E = 900 (gt)
BD chung
=> tam giác ABD = tam giác EBD ( ch-gn)
mk ko chắc nữa