Chứng minh A=1/2.3/4...79/80 <1/9
giải đầy đủ đi nhé mình chắc chắn sẽ tích
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Vì EFGH là tứ giác nên \(\widehat{E}+\widehat{F}+\widehat{G}+\widehat{H}=360^0\)
\(\Leftrightarrow6x-4+5x+14+5x-14+3x+22=360^0\)
\(\Leftrightarrow19x+18=360^0\)
\(\Leftrightarrow19x=342^0\)
\(\Leftrightarrow x=18\)
Thay x=18 vào các góc E;H;G;F ta được
\(\widehat{E}=104^0\); \(\widehat{H}=76^0\); \(\widehat{G}=76^0\); \(\widehat{F}=104^0\)
Vì \(\widehat{E}+\widehat{H}=104^0+76^0=180^0\)mà chúng ở vị trí trong cùng phía nên EF//GH mà \(\widehat{H}=\widehat{G}=76^0\)nên EFGH là hình thang cân
b) Vì EF//HI (I thuộc HG va EF//HG) và FI//EH suy ra EFIH la hình bình hành
suy ra EF=HI
Vì EFGH là htc nên EH=FG và EG=HF
Tự vẽ hình nha
\(A=\frac{1}{2}.\frac{3}{4}.\frac{5}{6}...\frac{79}{80}\)
\(A< \frac{2}{3}.\frac{4}{5}.\frac{6}{7}...\frac{80}{81}\)
\(A^2< \frac{1}{2}.\frac{2}{3}.\frac{3}{4}.\frac{4}{5}.\frac{5}{6}.\frac{6}{7}...\frac{79}{80}.\frac{80}{81}\)
\(A^2< \frac{1}{81}=\left(\frac{1}{9}\right)^2\)
=> \(A< \frac{1}{9}\left(đpcm\right)\)
Ta có:
\(\frac{1}{2}\)= 1- \(\frac{1}{2}\) < 1- \(\frac{1}{3}\)=\(\frac{2}{3}\)
\(\frac{3}{4}\)= 1- \(\frac{1}{4}\) < 1- \(\frac{1}{5}\) = \(\frac{4}{5}\)
...
\(\frac{79}{80}\) = 1- \(\frac{1}{80}\) < 1- \(\frac{1}{81}\)= \(\frac{80}{81}\)
Từ trên, ta có:
A= \(\frac{1}{2}\). \(\frac{3}{4}\). \(\frac{5}{6}\)...\(\frac{79}{80}\)< \(\frac{2}{3}\). \(\frac{4}{5}\). \(\frac{6}{7}\)...\(\frac{80}{81}\)
A2 < \(\left(\frac{2}{3}.\frac{4}{5}.\frac{6}{7}...\frac{80}{81}\right)\). \(\left(\frac{1}{2}.\frac{3}{4}.\frac{5}{6}...\frac{79}{80}\right)\)
A2 < \(\frac{1}{2}.\frac{2}{3}.\frac{3}{4}...\frac{79}{80}.\frac{80}{81}\)
A2 <\(\frac{1.\left(2.3.4...79.80\right)}{\left(2.3.4...79.80\right).81}\)
A2 < \(\frac{1}{81}\) =\(\left(\frac{1}{9}\right)^2\)
A < \(\frac{1}{9}\) (đpcm)
Vậy A< \(\frac{1}{9}\)
3x+10=91
3x=91-10
3x=81
3x=34
=>x=4
4x+2=64
4x+2=43
=>x+2=3
=>x=3-2
=>x=1
x \(\in\)B(12) và 0 < x < 50
B(12) = {0;12;24;36;48;60...}
Vì 0 < x < 50 nên x = {12;24;36;48}
30 chia hết cho x và 6 < x < 15
30 chia hết cho x
=> x là ước của 30
Ư(30) = {1;2;3;5;6;10;15;30}
Vì 6 < x < 15 nên x = 10
18 chia hết cho x+5 => x+5 là ước của 18
Ư(18) = {1;2;3;6;9;18}
Vì x+5 là ước của 18 nên ta có:
x+5=1 (loại)
x+5=2 (loại)
x+5=3 (loại)
x+5=6 => x=1
x+5=9 => x=4
x+5=18 => x=13
Vậy x = {1;4;13}
Ta có: \(\frac{3}{1^2.2^2}=\frac{3}{1.4}=1-\frac{1}{4}\); \(\frac{5}{2^2.3^2}=\frac{5}{4.9}=\frac{1}{4}-\frac{1}{9}\); \(\frac{7}{3^2.4^2}=\frac{7}{9.16}=\frac{1}{9}-\frac{1}{16}\); ...; \(\frac{39}{19^2.20^2}=\frac{39}{361.400}=\frac{1}{361}-\frac{1}{400}\)
Gọi tổng đó là A => A=\(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{9}+\frac{1}{9}-\frac{1}{16}+...+\frac{1}{361}-\frac{1}{400}\)
=> \(A=1-\frac{1}{400}=\frac{399}{400}< \frac{400}{400}=1\)
=> A < 1
ta có \(\frac{1}{41}+\frac{1}{42}+...+\frac{1}{80}< \frac{1}{80}+\frac{1}{80}+..+\frac{1}{80}\)
ta có vế phải có 40 số , vế trái cũng có 40 số
VT=\(40\cdot\frac{1}{80}=\frac{40}{80}=\frac{1}{2}\)
do đó VT<1/2
Ta có: \(A=\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+\frac{1}{10^2}+\frac{1}{12^2}+\frac{1}{14^2}\)
\(=\frac{1}{2^2}\left(1+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}\right)\)
\(< \frac{1}{2^2}\left(1+\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}\right)\)
\(=\frac{1}{2^2}\left(1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}\right)\)
\(=\frac{1}{2^2}\left(2-\frac{1}{7}\right)=\frac{1}{2}-\frac{1}{28}< \frac{1}{2}\)
Vậy \(A< \frac{1}{2}\).