Cho (P):y=ax^2 và (D) : y=2x-2
chứng minh rằng (D) tiếp xúc với (P) . tìm tọa độ tiếp điểm
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Phương trình hoành độ giao điểm là:
\(x^2-2x-m^2-m+3=0\)
\(\Delta=\left(-2\right)^2-4\cdot1\cdot\left(-m^2-m+3\right)\)
\(=4+4m^2+4m-12=4m^2+4m-8\)
\(=4\left(m+2\right)\left(m-1\right)\)
Để (P) tiếp xúc với (d) thì (m+2)(m-1)=0
=>m=-2(loại) hoặc m=1(nhận)
a: Khi m=3 thì (d): y=2x+3
Phương trình hoành độ giao điểm là:
\(x^2-2x-3=0\)
=>(x-3)(x+1)=0
=>x=3 hoặc x=-1
Khi x=3 thì y=9
Khi x=-1 thì y=1
b: Phương trình hoành độ giao điểm là:
\(x^2-2x-m=0\)
Δ=4+4m
Để (P) tiếp xúc với (d) thì 4m+4=0
hay m=-1
giúp mình đi vẽ hộ cái hình
cho đường tròn tâm O bán kính r,điểm A cố định nằm ngoài đường tròn.kẻ 2 tiếp tuyến AM,AN.Đường thẳng D đi qua A cắt đường tròn O tại B,C với AB<AC.Chứng minh 5 điểm A,M,N,O,I thuộc đường tròn
gợi ý nhé bn:
hoành độ giao điểm của đường thẳng và parabol là nghiệm của pt sau:
2x+1=-x2 (=) x2+2x+1 = 0
cậu tìm đenta nhé và đenta khi cậu tính ra sẽ =0 =) parabol tiếp xúc vs đường thẳng
còn tọa độ tiếp điểm là giải pt hoành độ và thay x vào một trong hai pt của đường thẳng hay parabol đều ra nghiệm giống nhau
1. Ta có đồ thị :
2. - Xét phương trình hoành độ giao điểm : \(x^2-2x-m=0\)
Có : \(\Delta^,=\left(-1\right)^2-\left(-m\right).1=m+1\)
- Để ( P ) tiếp xúc với d \(\Leftrightarrow\Delta^,=0\)
\(\Leftrightarrow m=-1\)
3. Có phương trình hoành độ giao điểm :
\(x^2-2x-\left(-1\right)=x^2-2x+1=\left(x-1\right)^2\)
\(\Rightarrow x=1\)
\(\Rightarrow y=1\)
Vậy tọa độ tiếp điểm \(I\left(1;1\right)\)
Hoành độ giao điểm của (P) và (d) là nghiệm của phương trình :
\(\frac{1}{4}.x^2=x-1\)
<=> x2 = 4x - 4
<=> x2 - 4x + 4 = 0 <=> (x - 2)2 = 0 <=> x - 2= 0 <=> x = 2
=> y = 2-1 = 1
Vậy (P) cắt (d) tại 1 điểm duy nhất là (2;1)
=> đpcm
PTHĐGĐ là:
x^2-2x+m-1=0
Δ=(-2)^2-4(m-1)=4-4m+4=-4m+8
a: Để (P) và (d) tiếp xúc thì -4m+8=0
=>m=2
=>x^2-2x+1=0
=>x=1
=>y=1
b: Để (P) cắt (d) thì -4m+8>0
=>m<2
Xét phương trình hoành độ giao điểm (d) và (P):
\(ax^2=2x-2\Leftrightarrow ax^2-2x+2=0\)
Có \(\Delta= \left(-2\right)^2-4.a.\left(-2\right)=4+8a\)
Để (d) tiếp xúc (P) thì 4+8a = 0 => a = \(-\dfrac{1}{2}\)
Toạ độ tiếp điểm \(x_1=x_2=\dfrac{2}{2a}=\dfrac{1}{a}\)
Câu này k cm tiếp xúc đc vì hệ số a chưa biết
Xét (P): y=ax^2 (a khác 0) (D):y=2x-2
Phương trình hoành độ giao điểm của (P) và (D) là: ax^2=2x-2
<=>ax^2-2x+2=0 (*)
(D) tiếp xúc với (P) <=> phương trình (*) có nghiệm kép <=> delta phẩy =0 và a khác 0 <=> 1^2-a×2=0<=> a=1/2 (thỏa mãn a khác 0)
Thay a=1/2 vào (*) ta được: 1/2x^2-2x+2=0 <=> x=2
Khi đó y=2×2-2=2
Vậy tọa độ tiếp điểm là (2;2)