K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 4 2016

Ai giải hộ giúp

8 tháng 4 2016

g(-2) = 3

8 tháng 4 2016

thayx=-2 ta có(-3)g(2)+g(-2)=0           (1)

thay x=2 ta có g(-2)+g(2)=4

                    ->3g(-2)+3g(2)=12             (2)

    lấy từng vế của (1)+(2) ta có

                 4g(-2)=12

            ->g(-2)=3

         Vậy g(-2)=3

        

a: \(f\left(-2\right)=5\cdot4-8-8=4\)

b: \(f\left(x\right)+g\left(x\right)=6x^2+2x-8\)

c: Đặt G(x)=0

=>x(x-2)=0

=>x=0 hoặc x=2

18 tháng 7 2019

Đáp án B.

23 tháng 7 2021

a) \(f\left(x\right)-g\left(x\right)=\left[x\left(x^2-2x+7\right)-1\right]-\left[x\left(x^2-2x-1\right)-1\right]\)

\(f\left(x\right)-g\left(x\right)=x^3-2x^2+7x-1-x^3+2x^2+x+1\)

\(f\left(x\right)-g\left(x\right)=8x\)

 \(f\left(x\right)+g\left(x\right)=x\left(x^2-2x+7\right)-1+x\left(x^2-2x-1\right)-1\)

 \(f\left(x\right)+g\left(x\right)=x^3-2x^2+7x-1+x^3-2x^2-x-1\)

 \(f\left(x\right)+g\left(x\right)=2x^3-4x^2+6x-2\)

b) 8x=0

=> x=0

=> Nghiệm đa thức f(x)-g(x)

c) Thay \(x=-\frac{3}{2}\)vào BT f(x)+g(x) ta được :

   \(2.\left(-\frac{3}{2}\right)^3-4\left(-\frac{3}{2}\right)^2+6\left(-\frac{3}{2}\right)-2\)

\(=6,75+9-9-2\)

\(=4,75\)

#H

HQ
Hà Quang Minh
Giáo viên
19 tháng 9 2023

G(-2) = (-2)2 – 4 = 4 – 4 = 0;

G(1) = 12 – 4 = 1 – 4 = -3;

G(0) = 02 – 4 = 0 – 4 = -4;

G(1) = 12 – 4 = 1- 4 = -3;

G(2) = 22 – 4 = 4 – 4 = 0

1:

\(f\left(x\right)=g\left(x\right)\cdot p\left(x\right)\)

=>\(p\left(x\right)=\dfrac{f\left(x\right)}{g\left(x\right)}\)

\(=\dfrac{x^5-3x^4+7x^3-9x^2+8x-2}{x^2-2x+a}\)

Để P(x) tồn tại với mọi x thì \(x^2-2x+a< >0\)(2) với mọi x

Giả sử \(x^2-2x+a=0\)(1)

\(\text{Δ}=\left(-2\right)^2-4\cdot1\cdot a=4-4a\)

Để phương trình (1)có nghiệm thì 4-4a>=0

=>a<=1

Do đó: Để bất phương trình (2) luôn đúng với mọi x thì a>1

Bài 3:

1:

AH=AO

=>H trùng với O

=>Tâm đường tròn ngoại tiếp ΔABC trùng với trực tâm của tam giác

=>ΔABC đều

=>\(\widehat{BAC}=60^0\)