K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 5 2021

undefined

16 tháng 4 2018

  • Chu Kiều Phương

Bấm vào câu hỏi tương tự 

3 tháng 4 2017

a) Tam giác ABC vuông tại A có \(BC^2=AB^2+AC^2\)

=>BC2=32+42=25

=>BC=5

Vậy BC=5 cm

b) Xét tam giác BHM vuông tại H và tam giác CKM vuông tại K có

MC=MB( vì M là trung điểm của BC)

CMK=BHM( 2 góc đối đỉnh)

=> tam giác BHM= tam giác CKM ( cạnh huyền- góc nhọn)

c) Xét tam giác HMI vuông tại I có HM>HI ( cạnh huyền lớn nhất) (1)

Có tam giác BHM= tam giác CKM ( câu b)

=>HM=MK (2)

Từ (1) và (2) =>MK>HI

d) Có \(\Delta BHM=\Delta CKM\)( theo câu b)

=> BH=KC

Xét tam giác  BKC có KC+BK>BC ( bất đẳng thức tam giác) (3)

Thay BH=KC vào (3) ta có BH+BK>BC

23 tháng 4 2016

a) theo định lí py-ta-go ta có:

ab^2 +ac^2=bc^2

9+16=bc^2 

25=bc^2

=>bc=5(cm)

b)ta có bh song song với ck(cùng vuông góc với am)

=> góc HBM=góc MCK(2 góc so le trong )

xét tam giác BHM và tam giác CKM, ta có:

+góc BMH=góc CMK(2 góc đối đỉnh)

+BM=CM( gt)

+góc HBM =góc MCK(c/m trên)

=> 2 tam giác = nhau (g.c.g)

c)theo 2 tam giác =nhau => HM=MK

mà HI>HM( HI là cạnh huyền tam giác IHM)

=>HI>MK

d)theo 2 tam giác = nhau => BH=CK

=>BH+BK=CK+BK

MÀ BK+CK>BC(bất đẳng thức trong tam giác 

=>BH+BK>BC

a: Ta có: ΔABC cân tại A

mà AM là đường trung tuyến

nên AM là đường cao

b: Ta có: ΔABC cân tại A

mà AM là đường cao

nên AM là tia phân giác của góc BAC

hay góc BAM= góc CAM

c: Xét ΔAHM vuông tại H và ΔAKM vuông tại K có

AM chung

\(\widehat{HAM}=\widehat{KAM}\)

Do đó: ΔAHM=ΔAKM

Suy ra: MH=MK

hay ΔMHK cân tại M

d: Xét ΔAHK có AH=AK

nên ΔAHK cân tại A

e: Xét ΔABC có AH/AB=AK/AC

nên HK//BC

A B C H K I M

Bài làm

a) Xét tam giác ABC vuông ở A có:

Theo định lí Pytago có:

BC2 = AB2 + AC2 

hay BC2 = 32 + 42 

=> BC2 = 9 + 16

=> BC2 = 25

=> BC = 5 ( cm )

b) Mik k hiểu rõ phần câu hỏi lắm, chắc là CMR: Tam giác BHM = tam giác CKM ak? 

Vì BH vuông góc với AM

CK vuông góc với AM

=> BH // CK 

=> \(\widehat{BCK}=\widehat{HBC}\) ( hai góc so le trong )

Xét tam giác BHM và tam giác CKM có: 

\(\widehat{BHM}=\widehat{CKM}\left(=90^0\right)\)

Góc nhọn: \(\widehat{BCK}=\widehat{HBC}\)( cmt )

Cạnh huyền BM = MC ( Do M là trung điểm BC )

=> Tam giác BHM = tam giác CKM ( cạnh huyền - góc nhọn )

c) Xét tam giác BHM vuông ở H có:

BM là cạnh huyền của tam giác BHM

=> BM > HM                                         (1)

Xét tam giác HIM vuông ở I có:

HM là cạnh huyền của tam giác HIM

HM > HI                                                (2)

Từ (1) và (2) => BM > HI

Mà BM < BC ( Do M là trung điểm BC )

=>HI < BC 

Xét tam giác MKC vuông ở K có:

MC là cạnh huyền của tam giác MKC

=> MC > MK 

Mà MC < BC ( Do M là trung điểm BC )

=> MK < BC 

Bài làm

~ Mik lm nốt câu d nha ~

d) Xét tam giác BHM và tam giác CKM ( cmt )

=> BH = CK

Xét tam giác BKC có: 

Theo bất đẳng thức của tam giác có:

BK + KC > BC

Mà BH = KC

=> BK + BH > BC 

Vậy BK + BH > BC 

13 tháng 1 2023

hình thì bạn tự vẽ nha !

a) xét ΔAMB và ΔAMC, ta có : 

AB = AC (gt)

MB = MC (vì M là trung điểm của cạnh BC)

AM là cạnh chung

⇒ ΔAMB = ΔAMC (c.c.c)

b) vì ΔAMB = ΔAMC nên ⇒ \(\widehat{AMB}=\widehat{AMC}\) (2 góc tương ứng)

ta có : \(\widehat{AMB}+\widehat{AMC}=180^0\) (kề bù)

\(\Rightarrow\widehat{AMB}=\widehat{AMC}=\dfrac{180^0}{2}=90^0\)

⇒ AM vuông góc với BC

c) vì ΔAMB = ΔAMC nên ⇒ \(\widehat{BAM}=\widehat{CAM}\) (2 góc tương ứng)

xét ΔAHM và ΔAKM, ta có : 

AM là cạnh chung

\(\widehat{HAM}=\widehat{KAM}\) (cmt)

⇒ ΔAHM = ΔAKM (cạnh góc vuông và góc nhọn kề)

⇒ HA = KA (2 cạnh tương ứng)

HB không thể nào bằng AC được nha, có thể đề sai 

d) vì HA = KA nên ⇒ ΔHAK là tam giác cân

trong ΔAHK, ta có : \(\widehat{AHK}=\left(180^0-\widehat{A}\right)\div2\)   (1)

trong ΔABC, ta có : \(\widehat{ABC}=\left(180^0-\widehat{A}\right)\div2\)    (2)

từ (1) và (2) ta suy ra \(\widehat{AHK}=\widehat{ABC}\), mà 2 góc này ở vị trí đồng vị, => HK // BC

16 tháng 1 2023

A B C M GT ∆ABC(AB = AC) M là trung điểm của BC H MH∟AB tại H MK∟AC tại∟K KL a)∆AMB = ∆AMC b)AM∟BC c)HA = KA; HB = KC d)HK song song với BC K X X

Chứng minh:

a) Xét hai ∆AMB và ∆AMC có:

       AB = AC (GT)

       MB = MB (M là trung điểm của BC)

       AM là cạnh chung

Vậy ∆AMB = ∆AMC(c.c.c)

b) Có ∆AMB = ∆AMC(theo a)

⇒ Góc AMB = Góc AMC(2 góc tương ứng)

mà góc AMB + AMC = 180° (2 góc kề bù)

⇒ Góc AMB = Góc AMC = 90°

⇒ AM ∟ BC

c) ΔABC có:

       AB = AC(GT)

⇒ ΔABC cân tại A

⇒ Góc B = Góc C

Có MHAB tại H ⇒ Góc MHB = 90°

Có MKAC tại K ⇒ Góc MKC = 90°

Xét hai ΔBHM và ΔCKM có:

       Góc B = Góc C(ΔABC cân tại A)

       MB = MC(M là trung điểm của BC)

       Góc MHB = Góc MKC = 90°

Vậy ΔBHM = ΔCKM(g.c.g)

⇒ HB = KC(2 cạnh tương ứng)

Có HB + HA = AB

⇒ HA = AB - HB

Có KC + KA = AC

⇒ KA = AC - KC

mà AB = AC(GT)

       HB = KC(2 cạnh tương ứng)

⇒ HA = KA (2 cạnh tương ứng)