cho phân số A=n-5 trên n+1 với n khác -1;n thuộc z
Tìm n để A có giá trị nguyên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b1 :
a, gọi d là ƯC(2n + 1;2n +2)
=> 2n + 1 chia hết cho d và 2n + 2 chia hết cho d
=> 2n + 2 - 2n - 1 chia hết cho d
=> 1 chia hết cho d
=> d = 1
=> 2n+1/2n+2 là ps tối giản
Bài 1: Với mọi số tự nhiên n, chứng minh các phân số sau là phân số tối giản:
A=2n+1/2n+2
Gọi ƯCLN của chúng là a
Ta có:2n+1 chia hết cho a
2n+2 chia hết cho a
- 2n+2 - 2n+1
- 1 chia hết cho a
- a= 1
Vậy 2n+1/2n+2 là phân số tối giản
B=2n+3/3n+5
Gọi ƯCLN của chúng là a
2n+3 chia hết cho a
3n+5 chia hết cho a
Suy ra 6n+9 chia hết cho a
6n+10 chia hết cho a
6n+10-6n+9
1 chia hết cho a
Vậy 2n+3/3n+5 là phân số tối giản
Mình chỉ biết thế thôi!
#hok_tot#
n + 3/n - 1
= n + ( 4 - 1 )/n -1
= n - 1 + 4/n - 1
=n - 1/n -1 + 4/n - 1
Suy ra n - 1 thuộc ước của 4 và n thuộc z,n khác 1
Ư (4) = 1;2;4
Do đó:
n - 1 = 1
n = 1 + 1
n = 2
n - 1 = 2
n = 2 + 1
n = 3
n - 1 =4
n = 4 + 1
n = 5
Vậy n = 2;3;5
a) Để A có giá trị nguyên thì \(n-5⋮n+1\)
\(\Leftrightarrow n+1-6⋮n+1\)
mà \(n+1⋮n+1\)
nên \(-6⋮n+1\)
\(\Leftrightarrow n+1\inƯ\left(-6\right)\)
\(\Leftrightarrow n+1\in\left\{1;-1;2;-2;3;-3;6;-6\right\}\)
hay \(n\in\left\{0;-2;1;-3;2;-4;5;-7\right\}\)
Vậy: \(n\in\left\{0;-2;1;-3;2;-4;5;-7\right\}\)
b)
Ta có: \(A=\dfrac{n-5}{n+1}\)
\(=\dfrac{n+1-6}{n+1}\)
\(=1-\dfrac{6}{n+1}\)
Để A là phân số tối giản thì ƯCLN(n-5;n+1)=1
\(\LeftrightarrowƯCLN\left(6;n+1\right)=1\)
\(\Leftrightarrow n+1⋮̸6\)
\(\Leftrightarrow n+1\ne6k\left(k\in N\right)\)
\(\Leftrightarrow n\ne6k-1\left(k\in N\right)\)
Vậy: Khi \(n\ne6k-1\left(k\in N\right)\) thì A là phân số tối giản
Để A là giá trị nguyên thì n + 1 là ước nguyên của 5
\(n+1=1\Rightarrow n=0\)
\(n+1=5\Rightarrow n=4\)
\(n+1=-1\Rightarrow n=-2\)
\(n+1=-5\Rightarrow n=-6\)
Ai thấy đúng thì ủng họ nha
\(A=\frac{5}{n+1}\)
\(\Rightarrow n+1\inƯ\left(5\right)\)
\(\Rightarrow n+1\in\){ -1; 1; -5; 5 }
\(n+1=-1\Rightarrow n=-2\)
\(n+1=1\Rightarrow n=0\)
\(n+1=-5\Rightarrow n=-6\)
\(n+1=5\Rightarrow n=4\)
Vậy \(n\in\){ -2; 0; -5; 4 }
A=n+1/n+3
A=n-3+4/n-3
A=1+4/n+3
để A tối giản thì 4/n+3 phải tối giản
mà n có 1 chữ số nên
suy ra n thuộc 2;4;6;8
mà n-3 phải khác 1;-1
nên n=6;8
A=n+1/n+3
A=n-3+4/n-3
A=1+4/n+3
để A tối giản thì 4/n+3 phải tối giản
mà n có 1 chữ số nên
suy ra n thuộc 2;4;6;8
mà n-3 phải khác 1;-1
nên n=6;8
giải đầy đủ ra nha
để\(A=\frac{n-5}{n+1}\) có giá trị nguyên
suy ra : n-5 phải chia hết cho n+1
suy ra : (n+1)-6 chia hết cho n+1
suy ra 6 chia hết cho n+1
suy ra n+1 thuộc Ư(6)=(1;-1;2;-2;3;-3;6;-6)
mà n khác -1 suy ra : n+1=1;2;-2;-3;6;-6
suy ra n=0;1;-3;-4;5;-7