K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 3 2023

`a, y xx 2,8 + 47,8 = 61,24`

`=> y xx 2,8=61,24 - 47,8`

`=> y xx 2,8=13,44`

`=> y=13,44 : 2,8`

`=>y=4,8`
`b, 13,9 + y : 5,7 = 26,23`

`=>  y : 5,7 = 26,23-13,9`

`=> y : 5,7 =12,33`

`=> y= 12,33 xx 5,7`

`=>y= 70,281`
`c, 68,5 - y xx 2,8 = 49,18`

`=> y xx 2,8 =  68,5 - 49,18`

`=>  y xx 2,8 =19,32`

`=>y=19,32 : 2,8`

`=>y=6,9`
`d, y : 5,7 - 3,6 = 5,8`

`=> y : 5,7 = 5,8 + 3,6`

`=> y : 5,7=9,4`

`=>y=9,4 xx 5,7`

`=>y= 53,58`

Em cảm ơn ạ!

12 tháng 11 2015

\(\frac{x+99}{-1}=\frac{y-98}{2}=\frac{z+97}{-3}=\frac{x+99-\left(y-98\right)+\left(z+97\right)}{-1-2+\left(-3\right)}=\frac{\left(x-y+z\right)+294}{-6}=\frac{50+294}{-6}=-\frac{172}{3}\)

x + 99 = 172/3  => x =-125/3

y - 98 = - 344/3 => y =  - 50 /3

z+ 97 = 172 => z = 75

22 tháng 7 2016

Đặt \(.K=\frac{x+99}{-1}=\frac{y-98}{2}=\frac{z+97}{-3}\)

\(\Rightarrow\frac{x+97}{K}=-1\)

\(\Rightarrow\frac{y-98}{K}=2\)

\(\Rightarrow\frac{z+97}{K}=-3\)

\(\Rightarrow\frac{x+99}{K}+\frac{y-98}{K}+\frac{z+97}{K}=\left(-1\right)+2+\left(-3\right)\)

\(\Rightarrow\frac{\left(x+99\right)+\left(y-98\right)+\left(z+97\right)}{K}=-2\)

Đến đây thì ... mình quên mất tiêu rồi bạn tự nghĩ tiếp nha :)

16 tháng 8 2020

Xét: \(x^4+y^4-xy\left(x^2+y^2\right)=\left(x^2+y^2+xy\right)\left(x-y\right)^2\ge0\)

\(\Rightarrow x^4+y^4\ge xy\left(x^2+y^2\right)\)(*)

Tương tự với (*) ta có: \(\hept{\begin{cases}y^4+z^4\ge yz\left(y^2+z^2\right)\\z^4+x^4\ge zx\left(z^2+x^2\right)\end{cases}}\)

\(\Rightarrow\Sigma_{cyc}\frac{1}{x^4+y^4+z}\le\Sigma_{cyc}\frac{1}{xy\left(x^2+y^2\right)+z.xyz}=\Sigma_{cyc}\frac{1}{xy\left(x^2+y^2+z^2\right)}=\frac{x+y+z}{x^2+y^2+z^2}\)

Ta có:\(x^2+y^2+z^2\ge\frac{1}{3}\left(x+y+z\right)^2\) và \(x+y+z\ge3\sqrt[3]{xyz}=3\)

\(\Rightarrow\Sigma_{cyc}\frac{1}{x^4+y^4+z}\le\frac{x+y+z}{x^2+y^2+z^2}\le\frac{1}{\frac{1}{3}\left(x+y+z\right)}\le1\)

Dấu "=" xảy ra khi x=y=z=1

15 tháng 3 2017

Đặt \(\hept{\begin{cases}2^x=a\\2^y=b\end{cases}}\) thì ta có: \(A=\frac{1+ab}{1+a^2}+\frac{1+ab}{1+b^2}\)

Ta cần chứng minh \(2\) là GTNN của A (khi x=1,02171...;y=1,02171... và x=y=1,04019...)

\(\Leftrightarrow\left(1+ab\right)\left(\frac{1}{1+a^2}+\frac{1}{1+b^2}\right)\ge2\)

Và điều này tương đương với \(\frac{\left(ab-1\right)\left(a-b\right)^2}{\left(a^2+1\right)\left(b^2+1\right)}\ge0\)

Cái này đúng nếu \(ab\ge1\)

18 tháng 2 2019

a)ta có xy=7*9=7*3*3

vậy x =9;21 , y=7;3

b) xy=-2*5

mà x<0<y

nên x=-2 ,y=5

c)x-y=5 hay x=y+5

\(\frac{y+5+4}{y-5}=\frac{4}{3}\Rightarrow3y+27=4y-20\Rightarrow y=47\Rightarrow x=52\)

18 tháng 2 2019

câu c mk nhầm đề sr bạn nha

\(\frac{y+5-4}{y-5}=\frac{4}{3}\Rightarrow3y+3=4y-5\Rightarrow y=8\Rightarrow x=13\)